Transcutaneous electrical nerve stimulation for fibromyalgia-like syndrome in patients with Long-COVID: a pilot randomized clinical trial
Raveendran, A., Jayadevan, R. & Sashidharan, S. Long COVID: an overview. Diabetes Metab. Syndr. Clin. Res. Revi. 15, 869–875 (2021).
Google Scholar
Control, C. D. & Prevention Nearly one in five American adults who have had COVID-19 still have long COVID. Natl. Center Health Stat. 622 (2022).
Sojka, A., Machniak, M., Andrzejewski, W., Kosendiak, A. & Chwałczyńska, A. Changes in physical activity and the occurrence of specific symptoms of long-COVID syndrome in men aged 18–25. Int. J. Environ. Res. Public Health 19, 1199 (2022).
Google Scholar
Khoja, O. et al. Clinical characteristics and mechanisms of musculoskeletal pain in long COVID. J. Pain Res. 1729–1748 (2022).
Parker, A. M. et al. Addressing the post-acute sequelae of SARS-CoV-2 infection: a multidisciplinary model of care. Lancet Respir. Med. 9, 1328–1341 (2021).
Google Scholar
Keklicek, H., Selçuk, H., Kurt, İ., Ulukaya, S. & Öztürk, G. Individuals with a COVID-19 history exhibit asymmetric gait patterns despite full recovery. J. Biomech. 137, 111098 (2022).
Google Scholar
Mitrović-Ajtić, O. et al. in Healthcare. (MDPI) (1666).
Gil, S. et al. Post-acute sequelae of SARS-CoV-2 associates with physical inactivity in a cohort of COVID-19 survivors. Sci. Rep. 13, 215. (2023).
Google Scholar
Burgmer, M. et al. Cerebral mechanisms of experimental hyperalgesia in fibromyalgia. Eur. J. Pain 16, 636–647 (2012).
Google Scholar
Suchdev, P. et al. Overview of the biomarkers reflecting inflammation and nutritional determinants of Anemia (BRINDA) project. Adv. Nutr. 7, 349–356 (2016).
Google Scholar
Control, C., f., D. & Prevention post-COVID conditions: Information for healthcare providers. (2024).
Plaut, S. & Long COVID-19 and viral fibromyalgia-ness: suggesting a mechanistic role for fascial myofibroblasts (Nineveh, the shadow is in the fascia). Front. Med. 10, 952278 (2023).
Google Scholar
Ursini, F. et al. Fibromyalgia: a new facet of the post-COVID-19 syndrome spectrum? Results from a web-based survey. RMD Open 7, e001735 (2021).
Google Scholar
Cordero, M. D. The inflammasome in fibromyalgia and CRPS: a microglial hypothesis? Nat. Rev. Rheumatol. 11, 630–630 (2015).
Google Scholar
O’Brien, A. T., Deitos, A., Pego, Y. T. & Fregni, F. Carrillo-de-la-Peña, M. T. Defective endogenous pain modulation in fibromyalgia: a meta-analysis of temporal summation and conditioned pain modulation paradigms. J. Pain 19, 819–836 (2018).
Google Scholar
Williams, D. A. & Gracely, R. H. Biology and therapy of fibromyalgia. Functional magnetic resonance imaging findings in fibromyalgia. Arthritis Res. Ther. 8, 1–8 (2007).
Clough, E. et al. Mitochondrial dynamics in SARS-COV2 spike protein treated human microglia: implications for neuro-COVID. J. Neuroimmune Pharmacol., 1–15 (2021).
Li, S. et al. SARS-CoV-2 triggers inflammatory responses and cell death through caspase-8 activation. Signal. Transduct. Target. Ther. 5, 235 (2020).
Google Scholar
Panariello, F., Cellini, L., Speciani, M., De Ronchi, D. & Atti, A. R. How does SARS-CoV-2 affect the central nervous system? A working hypothesis. Front. Psychiatr. 11, 582345 (2020).
Google Scholar
Atta, A. A., Ibrahim, W. W., Mohamed, A. F. & Abdelkader N. F. Microglia polarization in nociplastic pain: mechanisms and perspectives. Inflammopharmacology 31, 1053–1067 (2023).
Google Scholar
Berry, M. et al. Dynamic functional brain connectivity underlying temporal summation of pain in fibromyalgia. Arthritis Rheumatol. 74, 700–710 (2022).
Google Scholar
Mosch, B., Hagena, V., Herpertz, S. & Diers, M. Brain morphometric changes in fibromyalgia and the impact of psychometric and clinical factors: a volumetric and diffusion-tensor imaging study. Arthritis Res. Ther. 25, 81 (2023).
Google Scholar
Scardua-Silva, L. et al. Microstructural brain abnormalities, fatigue, and cognitive dysfunction after mild COVID-19. Sci. Rep. 14, 1758 (2024).
Google Scholar
Fialho, M. F. P., Brum, E. S. & Oliveira, S. M. Could the fibromyalgia syndrome be triggered or enhanced by COVID-19? Inflammopharmacology 31, 633–651 (2023).
A Phase 2 study to evaluate the efficacy and safety of TNX-102 SL in patients with Multi-site Pain Associated with Post-acute Sequelae of SARS-CoV-2 (2023). Infection (PREVAIL).
Fernández-de‐las‐Peñas, C., Nijs, J., Giordano, R. & Arendt‐Nielsen, L. Precision management of post‐COVID pain: an evidence and clinical‐based approach. Eur. J. Pain 27, 1107–1125 (2023).
Google Scholar
DeSantana, J. M., Walsh, D. M., Vance, C., Rakel, B. A. & Sluka, K. A. Effectiveness of transcutaneous electrical nerve stimulation for treatment of hyperalgesia and pain. Curr. Rheumatol. Rep. 10, 492–499 (2008).
Google Scholar
Vance, C. G., Dailey, D. L., Rakel, B. A. & Sluka, K. A. using TENS for pain control: the state of the evidence. Pain Manag. 4, 197–209 (2014).
Google Scholar
Gozani, S. N. Remote analgesic effects of conventional transcutaneous electrical nerve stimulation: a scientific and clinical review with a focus on chronic pain. J. pain Res., 3185–3201 (2019).
Lin, T., Gargya, A., Singh, H., Sivanesan, E. & Gulati, A. Mechanism of peripheral nerve stimulation in chronic pain. Pain Med. 21, S6–S12 (2020).
Google Scholar
Moayedi, M. & Davis, K. D. Theories of pain: from specificity to gate control. J. Neurophysiol. (2013).
Amer-Cuenca, J. J. et al. The dose-dependent effects of transcutaneous electrical nerve stimulation for pain relief in individuals with fibromyalgia: a systematic review and meta-analysis. Pain 10.1097 (2022).
Johnson, M. I., Claydon, L. S., Herbison, G. P., Jones, G. & Paley, C. A. Transcutaneous electrical nerve stimulation (TENS) for fibromyalgia in adults. Cochrane Database Syst. Rev. 10, Cd012172. (2017).
Google Scholar
Quell 2.0. Wearable pain relief technology TM User Manual. (2018).
Jamison, R. N. et al. Effects of wearable transcutaneous electrical nerve stimulation on fibromyalgia: a randomized controlled trial. J. Pain Res. 2265–2282 (2021).
Cleeland, C. & Ryan, K. Pain assessment: global use of the brief Pain Inventory. Ann. Acad. Med. Singapore 23, 129–138 (1994).
Google Scholar
Neuberger, G. B. Measures of fatigue: the fatigue questionnaire, fatigue severity scale, multidimensional assessment of fatigue scale, and short Form-36 vitality (Energy/Fatigue) subscale of the short Form Health Survey. Arthr. Rhuem. 49, S175–S183 (2003).
Google Scholar
Merriwether, E. N. et al. Physical activity is related to function and fatigue but not pain in women with fibromyalgia: baseline analyses from the fibromyalgia activity study with TENS (FAST). Arthritis Res. Ther. 20, 199. (2018).
Beauchet, O. et al. Walking speed-related changes in stride time variability: effects of decreased speed. J. Neuroeng. Rehabil. 6, 1–6 (2009).
Deusen, J. V. Temporal and Distance Parameters, in Assessment in Occupational Therapy and Physical Therapy Chap. 17. (1996).
Lee, T., Lee, M., Youm, C., Noh, B. & Park, H. Association between gait variability and gait-ability decline in elderly women with subthreshold insomnia stage. Int. J. Environ. Res. Public Health 17, 5181 (2020).
Google Scholar
Kang, G. E., Zahiri, M., Lepow, B., Saleem, N. & Najafi, B. The effect of daily use of plantar mechanical stimulation through micro-mobile foot compression device installed in shoe insoles on vibration perception, gait, and balance in people with diabetic peripheral neuropathy. J. Diabetes Sci. Technol. 13, 847–856 (2019).
Google Scholar
Gewandter, J. S. et al. Wireless transcutaneous electrical nerve stimulation (TENS) for chronic chemotherapy-induced peripheral neuropathy (CIPN): a proof-of-concept randomized clinical trial. J. pain (2023).
Venkatesh, V. & Davis, F. D. A theoretical extension of the technology acceptance model: four longitudinal field studies. Manag. Sci. 46, 186–204 (2000).
Google Scholar
Jamison, R. N. et al. Effects of wearable transcutaneous electrical nerve stimulation on fibromyalgia: a randomized controlled trial. J. Pain Res. 14, 2265–2282. (2021).
Google Scholar
Zulbaran-Rojas, A. et al. Optimizing tissue oxygenation in reduction mammoplasty: the role of continuous diffusion of oxygen: a feasibility pilot randomized controlled trial. J. Surg. Res. 292, 113–122 (2023).
Google Scholar
Zulbaran-Rojas, A., Mishra, R., Pham, A., Suliburk, J. & Najafi, B. Continuous diffusion of oxygen adjunct therapy to improve scar reduction after cervicotomy–A proof of concept randomized controlled trial. J. Surg. Res. 268, 585–594 (2021).
Google Scholar
Zulbaran-Rojas, A., Park, C., El-Refaei, N., Lepow, B. & Najafi, B. Home-based electrical stimulation to accelerate wound healing—a double-blinded randomized control trial. J. Diabetes Sci. Technol. 17, 15–24 (2023).
Google Scholar
Wolfe, F. et al. The American College of Rheumatology preliminary diagnostic criteria for fibromyalgia and measurement of symptom severity. Arthritis Care Res. 62, 600–610 (2010).
Google Scholar
Arnold, L. M. et al. A randomized, double-blind, placebo-controlled trial of duloxetine in the treatment of women with fibromyalgia with or without major depressive disorder. Pain 119, 5–15 (2005).
Google Scholar
Arnold, L. M., Gendreau, R. M., Palmer, R. H., Gendreau, J. F. & Wang, Y. Efficacy and safety of milnacipran 100 mg/day in patients with fibromyalgia: results of a randomized, double-blind, placebo‐controlled trial. Arthr. Rhuem. 62, 2745–2756 (2010).
Google Scholar
Coskun Benlidayi, I. The effectiveness and safety of electrotherapy in the management of fibromyalgia. Rheumatol. Int. 40, 1571–1580 (2020).
Google Scholar
Salaffi, F., Stancati, A., Silvestri, C. A., Ciapetti, A. & Grassi, W. Minimal clinically important changes in chronic musculoskeletal pain intensity measured on a numerical rating scale. Eur. J. Pain 8, 283–291 (2004).
Google Scholar
Ahmed, M., Aamir, R., Jishi, Z. & Scharf, M. B. The effects of milnacipran on sleep disturbance in fibromyalgia: a randomized, double-blind, placebo-controlled, two-way crossover study. J. Clin. Sleep. Med. 12, 79–86. (2016).
Google Scholar
Kong, X. & Gozani, S. N. Effectiveness of fixed-site high-frequency transcutaneous electrical nerve stimulation in chronic pain: a large-scale, observational study. J. pain Res. 703–714 (2018).
Azadvari, M., Haghparast, A., Nakhostin-Ansari, A., Razavi, S. Z. E. & Hosseini, M. Musculoskeletal symptoms in patients with long COVID: a cross-sectional study on Iranian patients. Heliyon 8 (2022).
Bormann, J., Shively, M., Smith, T. L. & Gifford, A. L. Measurement of fatigue in HIV-Positive adults: reliability and validity of the global fatigue index. J. Assoc. Nurses AIDS Care 12, 75–83 (2001).
Google Scholar
Stebbings, S., Herbison, P., Doyle, T., Treharne, G. J. & Highton, J. A comparison of fatigue correlates in rheumatoid arthritis and osteoarthritis: disparity in associations with disability, anxiety and sleep disturbance. Rheumatology 49, 361–367 (2009).
Google Scholar
Straube, S., Derry, S., Moore, R. A. & McQuay, H. J. Pregabalin in fibromyalgia: meta-analysis of efficacy and safety from company clinical trial reports. Rheumatology 49, 706–715 (2010).
Google Scholar
Crofford, L. J. et al. Fibromyalgia relapse evaluation and efficacy for durability of meaningful relief (FREEDOM): a 6-month, double-blind, placebo-controlled trial with pregabalin. Pain 136, 419–431 (2008).
Google Scholar
Moore, A. R. et al. Fibromyalgia: moderate and substantial pain intensity reduction predicts improvement in other outcomes and substantial quality of life gain. Pain 149, 360–364 (2010).
Google Scholar
Dailey, D. L. et al. A randomized controlled trial of tens for movement-evoked pain in women with fibromyalgia. Arthritis Rheumatol. (Hoboken NJ) 72, 824 (2020).
Google Scholar
Carrasco-Vega, E., Ruiz-Muñoz, M., Cuesta-Vargas, A., Romero-Galisteo, R. P. & González-Sánchez, M. Individuals with fibromyalgia have a different gait pattern and a reduced walk functional capacity: a systematic review with meta-analysis. PeerJ 10, e12908 (2022).
Google Scholar
Heredia-Jimenez, J., Latorre-Roman, P., Santos-Campos, M., Orantes-Gonzalez, E. & Soto-Hermoso, V. M. Spatio-temporal gait disorder and gait fatigue index in a six-minute walk test in women with fibromyalgia. Clin. Biomech. Elsevier Ltd. 33, 1–6 (2016).
Google Scholar
Martín-Martínez, J. P. et al. Impact of cognitive tasks on biomechanical and kinematic parameters of gait in women with fibromyalgia: a cross-sectional study. Physiol. Behav. 227, 113171 (2020).
Google Scholar
Radunović, G. et al. Assessment of gait in patients with fibromyalgia during motor and cognitive dual task walking: a cross-sectional study. Adv. Rheumatol. 61, 53 (2021).
Google Scholar
Kaleth, A. S., Slaven, J. E. & Ang, D. C. Determining the minimal clinically important difference for 6-minute walk distance in fibromyalgia. Am. J. Phys. Med. Rehabil. 95, 738–745 (2016).
Google Scholar
Salvat, I. et al. Functional status, physical activity level, and exercise regularity in patients with fibromyalgia after multidisciplinary treatment: retrospective analysis of a randomized controlled trial. Rheumatol. Int. 37, 377–387 (2017).
Google Scholar
Tiidus, P. M., Pierrynowski, M. & Dawson, K. A. Influence of moderate training on gait and work capacity of fibromyalgia patients: a preliminary field study. J. Sports Sci. Med. 1, 122 (2002).
Google Scholar
Tran, S. T. et al. A pilot study of biomechanical assessment before and after an integrative training program for adolescents with juvenile fibromyalgia. Pediatr. Rheumatol. Online J. 14, 43. (2016).
Google Scholar
Lin, S., Sun, Q., Wang, H. & Xie, G. Influence of transcutaneous electrical nerve stimulation on spasticity, balance, and walking speed in stroke patients: a systematic review and meta-analysis. J. Rehabil. Med. 50, 3–7 (2018).
Google Scholar
Appelman, B. et al. Muscle abnormalities worsen after post-exertional malaise in long COVID. Nat. Commun. 15, 1–15 (2024).
Google Scholar
Singh, I. et al. Persistent exertional intolerance after COVID-19: insights from invasive cardiopulmonary exercise testing. Chest 161, 54–63 (2022).
Google Scholar
Roskell, N. S., Beard, S. M., Zhao, Y. & Le, T. K. A meta-analysis of pain response in the treatment of fibromyalgia. Pain Pract. 11, 516–527 (2011).
Google Scholar
Arnold, L. M. et al. A double-blind, multicenter trial comparing duloxetine with placebo in the treatment of fibromyalgia patients with or without major depressive disorder. Arthritis Rheum. Official J. Am. Coll. Rheumatol. 50, 2974–2984 (2004).
Google Scholar
Orfei, M. D. et al. A new look on long-COVID effects: the functional brain fog syndrome. J. Clin. Med. 11, 5529 (2022).
Google Scholar
Dailey, D. L. et al. Transcutaneous electrical nerve stimulation reduces pain, fatigue and hyperalgesia while restoring central inhibition in primary fibromyalgia. Pain® 154, 2554–2562 (2013).
Google Scholar
Zulbaran-Rojas, A. et al. Electrical stimulation to regain lower extremity muscle perfusion and endurance in patients with post‐acute sequelae of SARS CoV‐2: a randomized controlled trial. Physiol. Rep. 11, e15636 (2023).
Google Scholar
link