Metabolic regulation of the immune system in health and diseases: mechanisms and interventions

0
Metabolic regulation of the immune system in health and diseases: mechanisms and interventions
  • Ganeshan, K. & Chawla, A. Metabolic regulation of immune responses. Annu. Rev. Immunol. 32, 609–634 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ning, L., Shishi, Z., Bo, W. & Huiqing, L. Targeting immunometabolism against acute lung injury. Clin. Immunol. 249, 109289 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mathis, D. & Shoelson, S. E. Immunometabolism: an emerging frontier. Nat. Rev. Immunol. 11, 81 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fullerton, M. D., Steinberg, G. R. & Schertzer, J. D. Immunometabolism of AMPK in insulin resistance and atherosclerosis. Mol. Cell Endocrinol. 366, 224–234 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Schipper, H. S., Prakken, B., Kalkhoven, E. & Boes, M. Adipose tissue-resident immune cells: key players in immunometabolism. Trends Endocrinol. Metab. 23, 407–415 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Martinez-Santibañez, G. & Lumeng, C. N. Macrophages and the regulation of adipose tissue remodeling. Annu. Rev. Nutr. 34, 57–76 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Rathmell, J. C. Metabolism and autophagy in the immune system: immunometabolism comes of age. Immunol. Rev. 249, 5–13 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pearce, E. L. & Pearce, E. J. Metabolic pathways in immune cell activation and quiescence. Immunity 38, 633–643 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mockler, M. B., Conroy, M. J. & Lysaght, J. Targeting T cell immunometabolism for cancer immunotherapy; understanding the impact of the tumor microenvironment. Front. Oncol. 4, 107 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pearce, E. L., Poffenberger, M. C., Chang, C. H. & Jones, R. G. Fueling immunity: insights into metabolism and lymphocyte function. Science 342, 1242454 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Silveira Rossi, J. L. et al. Metabolic syndrome and cardiovascular diseases: going beyond traditional risk factors. Diab. Metab. Res. Rev. 38, e3502 (2022).

    Article 
    CAS 

    Google Scholar 

  • Kelly, B. & O’Neill, L. A. Metabolic reprogramming in macrophages and dendritic cells in innate immunity. Cell Res. 25, 771–784 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mantovani, A. et al. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 23, 549–555 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhu, L. et al. Cellular metabolism and macrophage functional polarization. Int Rev. Immunol. 34, 82–100 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Mantovani, A. et al. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 25, 677–686 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhang, Q. & Sioud, M. Tumor-associated macrophage subsets: shaping polarization and targeting. Int. J. Mol. Sci. 24, 7493 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nakai, K. Multiple roles of macrophage in skin. J. Dermatol Sci. 104, 2–10 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Arora, S. et al. Macrophages: their role, activation and polarization in pulmonary diseases. Immunobiology 223, 383–396 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Huang, X., Li, Y., Fu, M. & Xin, H. B. Polarizing macrophages in vitro. Methods Mol. Biol. 1784, 119–126 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Colin, S., Chinetti-Gbaguidi, G. & Staels, B. Macrophage phenotypes in atherosclerosis. Immunol. Rev. 262, 153–166 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Viola, A. et al. The metabolic signature of macrophage responses. Front. Immunol. 10, 1462 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Van den Bossche, J., O’Neill, L. A. & Menon, D. Macrophage immunometabolism: where are we (going)? Trends Immunol. 38, 395–406 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Warburg, O., Gawehn, K. & Geissler, A. W. Metabolism of leukocytes. Z. Naturforsch. B 13b, 515–516 (1958).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Warburg, O., Negelein, E. & Posener, K. Versuche an überlebendem Ca. Gewebe. Klin. Wochenschr (1923).

  • Warburg, O., Posener, K. & Negelein, E. Über den stoffwechsel der carcinomzelle. Naturwissenschaften 12, 1131–1137 (1924).

    Article 
    CAS 

    Google Scholar 

  • Vaupel, P. & Multhoff, G. Revisiting the Warburg effect: historical dogma versus current understanding. J. Physiol. 599, 1745–1757 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, N. et al. PIWIL1 governs the crosstalk of cancer cell metabolism and immunosuppressive microenvironment in hepatocellular carcinoma. Signal Transduct. Target. Ther. 6, 86 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Barros, L. F. et al. Aerobic glycolysis in the brain: warburg and crabtree contra pasteur. Neurochem. Res. 46, 15–22 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Vallée, A., Lecarpentier, Y., Guillevin, R. & Vallée, J. N. Aerobic glycolysis in amyotrophic lateral sclerosis and Huntington’s disease. Rev. Neurosci. 29, 547–555 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Chang, C. H. et al. Posttranscriptional control of T cell effector function by aerobic glycolysis. Cell 153, 1239–1251 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Minton, K. Immunometabolism: what is the point of warburg? Nat. Rev. Immunol. 13, 472 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Poznanski, S. M., Barra, N. G., Ashkar, A. A. & Schertzer, J. D. Immunometabolism of T cells and NK cells: metabolic control of effector and regulatory function. Inflamm. Res. 67, 813–828 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Krejčová, G. et al. Drosophila macrophages switch to aerobic glycolysis to mount effective antibacterial defense. Elife 8, e50414 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yuan, Y. et al. The transcription factor KLF14 regulates macrophage glycolysis and immune function by inhibiting HK2 in sepsis. Cell Mol. Immunol. 19, 504–515 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, T. et al. HIF1α-induced glycolysis metabolism is essential to the activation of inflammatory macrophages. Mediat. Inflamm. 2017, 9029327 (2017).

    Article 

    Google Scholar 

  • Tannahill, G. M. et al. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature 496, 238–242 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kim, Y. J. et al. Cassiaside C inhibits M1 polarization of macrophages by downregulating glycolysis. Int J. Mol. Sci. 23, 1696 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Palsson-McDermott, E. M. et al. Pyruvate kinase M2 regulates Hif-1α activity and IL-1β induction and is a critical determinant of the warburg effect in LPS-activated macrophages. Cell Metab. 21, 65–80 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, J. et al. Lactylation of PKM2 suppresses inflammatory metabolic adaptation in pro-inflammatory macrophages. Int. J. Biol. Sci. 18, 6210–6225 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • O’Neill, L. A. & Pearce, E. J. Immunometabolism governs dendritic cell and macrophage function. J. Exp. Med. 213, 15–23 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Williams, N. C. & O’Neill, L. A. J. A role for the krebs cycle intermediate citrate in metabolic reprogramming in innate immunity and inflammation. Front. Immunol. 9, 141 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wu, J. Y. et al. Cancer-derived succinate promotes macrophage polarization and cancer metastasis via succinate receptor. Mol. Cell 77, 213–227.e215 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Duan, J. X. et al. Extracellular citrate serves as a DAMP to activate macrophages and promote LPS-induced lung injury in mice. Int. Immunopharmacol. 101, 108372 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wu, X. et al. Metabolic control during macrophage polarization by a citrate-functionalized scaffold for maintaining bone homeostasis. Adv. Healthc. Mater. e2400770 (2024). https://doi.org/10.1002/adhm.202400770.

  • Collins, S. L. et al. mTORC1 signaling regulates proinflammatory macrophage function and metabolism. J. Immunol. 207, 913–922 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rao, J. et al. FSTL1 promotes liver fibrosis by reprogramming macrophage function through modulating the intracellular function of PKM2. Gut 71, 2539–2550 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhang, Y. et al. M2 macrophage exosome-derived lncRNA AK083884 protects mice from CVB3-induced viral myocarditis through regulating PKM2/HIF-1α axis mediated metabolic reprogramming of macrophages. Redox Biol. 69, 103016 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Nagy, C. & Haschemi, A. Time and demand are two critical dimensions of immunometabolism: the process of macrophage activation and the pentose phosphate pathway. Front. Immunol. 6, 164 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dionísio, F., Tomas, L. & Schulz, C. Glycolytic side pathways regulating macrophage inflammatory phenotypes and functions. Am. J. Physiol. Cell Physiol. 324, C558–c564 (2023).

    Article 
    PubMed 

    Google Scholar 

  • He, D. et al. Pentose phosphate pathway regulates tolerogenic apoptotic cell clearance and immune tolerance. Front. Immunol. 12, 797091 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Nakamizo, S. et al. Activation of the pentose phosphate pathway in macrophages is crucial for granuloma formation in sarcoidosis. J. Clin. Investig. 133, e171088 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wculek, S. K. et al. Oxidative phosphorylation selectively orchestrates tissue macrophage homeostasis. Immunity 56, 516–530.e519 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, F. et al. Glycolytic stimulation is not a requirement for m2 macrophage differentiation. Cell Metab. 28, 463–475.e464 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dang, C. P. & Leelahavanichkul, A. Over-expression of miR-223 induces M2 macrophage through glycolysis alteration and attenuates LPS-induced sepsis mouse model, the cell-based therapy in sepsis. PLoS One 15, e0236038 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yan, J. & Horng, T. Lipid metabolism in regulation of macrophage functions. Trends Cell Biol. 30, 979–989 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Batista-Gonzalez, A., Vidal, R., Criollo, A. & Carreño, L. J. New insights on the role of lipid metabolism in the metabolic reprogramming of macrophages. Front. Immunol. 10, 2993 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wu, L. et al. RIPK3 orchestrates fatty acid metabolism in tumor-associated macrophages and hepatocarcinogenesis. Cancer Immunol. Res. 8, 710–721 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Nomura, M. et al. Fatty acid oxidation in macrophage polarization. Nat. Immunol. 17, 216–217 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, X. et al. Macrophage HIF-2α suppresses NLRP3 inflammasome activation and alleviates insulin resistance. Cell Rep. 36, 109607 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jha, A. K. et al. Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization. Immunity 42, 419–430 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hu, X. et al. Glutamine metabolic microenvironment drives M2 macrophage polarization to mediate trastuzumab resistance in HER2-positive gastric cancer. Cancer Commun.43, 909–937 (2023).

    Article 

    Google Scholar 

  • Zhu, Y. et al. Cigarette smoke promotes oral leukoplakia via regulating glutamine metabolism and M2 polarization of macrophage. Int. J. Oral. Sci. 13, 25 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhu, Y. et al. Glutamine mitigates murine burn sepsis by supporting macrophage M2 polarization through repressing the SIRT5-mediated desuccinylation of pyruvate dehydrogenase. Burns Trauma 10, tkac041 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, P. S. et al. α-ketoglutarate orchestrates macrophage activation through metabolic and epigenetic reprogramming. Nat. Immunol. 18, 985–994 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Shang, M. et al. Macrophage-derived glutamine boosts satellite cells and muscle regeneration. Nature 587, 626–631 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, C. et al. Serine synthesis sustains macrophage IL-1β production via NAD(+)-dependent protein acetylation. Mol. Cell 84, 744–759.e746 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Shan, X. et al. Serine metabolism orchestrates macrophage polarization by regulating the IGF1-p38 axis. Cell Mol. Immunol. 19, 1263–1278 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rodriguez, A. E. et al. Serine metabolism supports macrophage IL-1β production. Cell Metab. 29, 1003–1011.e1004 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ouyang, Y. et al. FGFR3 alterations in bladder cancer stimulate serine synthesis to induce immune-inert macrophages that suppress t-cell recruitment and activation. Cancer Res. 83, 4030–4046 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, J. et al. Crocin alleviates coronary atherosclerosis via inhibiting lipid synthesis and inducing M2 macrophage polarization. Int. Immunopharmacol. 55, 120–127 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Meana, C. et al. Lipin-1 integrates lipid synthesis with proinflammatory responses during TLR activation in macrophages. J. Immunol. 193, 4614–4622 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lee, J. H. et al. SREBP-1a-stimulated lipid synthesis is required for macrophage phagocytosis downstream of TLR4-directed mTORC1. Proc. Natl Acad. Sci. USA 115, E12228–e12234 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Almeida, L., Lochner, M., Berod, L. & Sparwasser, T. Metabolic pathways in T cell activation and lineage differentiation. Semin. Immunol. 28, 514–524 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kidani, Y. et al. Sterol regulatory element-binding proteins are essential for the metabolic programming of effector T cells and adaptive immunity. Nat. Immunol. 14, 489–499 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xu, X. et al. Madecassic acid, the contributor to the anti-colitis effect of madecassoside, enhances the shift of Th17 toward Treg cells via the PPARγ/AMPK/ACC1 pathway. Cell Death Dis. 8, e2723 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pinzon Grimaldos, A. et al. The role of lipid metabolism in shaping the expansion and the function of regulatory T cells. Clin. Exp. Immunol. 208, 181–192 (2022).

    Article 
    PubMed 

    Google Scholar 

  • van den Broek, T., Borghans, J. A. M. & van Wijk, F. The full spectrum of human naive T cells. Nat. Rev. Immunol. 18, 363–373 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Chen, H., Yang, T., Zhu, L. & Zhao, Y. Cellular metabolism on T-cell development and function. Int. Rev. Immunol. 34, 19–33 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Angelin, A. et al. Foxp3 reprograms T Cell metabolism to function in low-glucose, high-lactate environments. Cell Metab. 25, 1282–1293.e1287 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Raud, B. et al. Fatty acid metabolism in CD8(+) T cell memory: challenging current concepts. Immunol. Rev. 283, 213–231 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cribioli, E. et al. Enforcing GLUT3 expression in CD8(+) T cells improves fitness and tumor control by promoting glucose uptake and energy storage. Front. Immunol. 13, 976628 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Frauwirth, K. A. et al. The CD28 signaling pathway regulates glucose metabolism. Immunity 16, 769–777 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Macintyre, A. N. et al. The glucose transporter Glut1 is selectively essential for CD4 T cell activation and effector function. Cell Metab. 20, 61–72 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, H. et al. TCR activation directly stimulates PYGB-dependent glycogenolysis to fuel the early recall response in CD8(+) memory T cells. Mol. Cell 82, 3077–3088.e3076 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Shan, J., Jin, H. & Xu, Y. T cell metabolism: a new perspective on Th17/Treg cell imbalance in systemic lupus erythematosus. Front. Immunol. 11, 1027 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gerriets, V. A. et al. Metabolic programming and PDHK1 control CD4+ T cell subsets and inflammation. J. Clin. Investig. 125, 194–207 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Zhang, S. et al. The alterations in and the role of the Th17/treg balance in metabolic diseases. Front Immunol. 12, 678355 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lou, W. et al. Lipid metabolic features of T cells in the tumor microenvironment. Lipids Health Dis. 21, 94 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kim, Y. C. & Guan, K. L. mTOR: a pharmacologic target for autophagy regulation. J. Clin. Investig. 125, 25–32 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Huang, H. et al. mTOR signaling at the crossroads of environmental signals and T-cell fate decisions. Immunol. Rev. 295, 15–38 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lochner, M., Berod, L. & Sparwasser, T. Fatty acid metabolism in the regulation of T cell function. Trends Immunol. 36, 81–91 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Angela, M. et al. Fatty acid metabolic reprogramming via mTOR-mediated inductions of PPARγ directs early activation of T cells. Nat. Commun. 7, 13683 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chyau, C. C. et al. Antrodan alleviates high-fat and high-fructose diet-induced fatty liver disease in C57BL/6 mice model via AMPK/Sirt1/SREBP-1c/PPARγ pathway. Int J. Mol. Sci. 21, 360 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Teresi, R. E., Planchon, S. M., Waite, K. A. & Eng, C. Regulation of the PTEN promoter by statins and SREBP. Hum. Mol. Genet. 17, 919–928 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Maciolek, J. A., Pasternak, J. A. & Wilson, H. L. Metabolism of activated T lymphocytes. Curr. Opin. Immunol. 27, 60–74 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pan, Y. et al. Survival of tissue-resident memory T cells requires exogenous lipid uptake and metabolism. Nature 543, 252–256 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Endo, Y., Kanno, T. & Nakajima, T. Fatty acid metabolism in T-cell function and differentiation. Int. Immunol. 34, 579–587 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Barbi, J., Pardoll, D. & Pan, F. Treg functional stability and its responsiveness to the microenvironment. Immunol. Rev. 259, 115–139 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pereira, J. A. et al. PD-1 and CTLA-4 exert additive control of effector regulatory T cells at homeostasis. Front. Immunol. 14, 997376 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, W. & Zou, W. Amino acids and their transporters in T cell immunity and cancer therapy. Mol. Cell 80, 384–395 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ron-Harel, N. et al. T cell activation depends on extracellular alanine. Cell Rep. 28, 3011–3021.e3014 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Geiger, R. et al. L-arginine modulates T cell metabolism and enhances survival and anti-tumor activity. Cell 167, 829–842.e813 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vinogradova, E. V. et al. An activity-guided map of electrophile-cysteine interactions in primary human T cells. Cell 182, 1009–1026.e1029 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nakaya, M. et al. Inflammatory T cell responses rely on amino acid transporter ASCT2 facilitation of glutamine uptake and mTORC1 kinase activation. Immunity 40, 692–705 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ananieva, E. A., Powell, J. D. & Hutson, S. M. Leucine metabolism in T cell activation: mTOR signaling and beyond. Adv. Nutr. 7, 798s–805s (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Roy, D. G. et al. Methionine metabolism shapes t helper cell responses through regulation of epigenetic reprogramming. Cell Metab. 31, 250–266.e259 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ma, E. H. et al. Serine is an essential metabolite for effector t cell expansion. Cell Metab. 25, 345–357 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pieper, K., Grimbacher, B. & Eibel, H. B-cell biology and development. J. Allergy Clin. Immunol. 131, 959–971 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Prieto, J. M. B. & Felippe, M. J. B. Development, phenotype, and function of non-conventional B cells. Comp. Immunol. Microbiol. Infect. Dis. 54, 38–44 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rosser, E. C. & Mauri, C. Regulatory B cells: origin, phenotype, and function. Immunity 42, 607–612 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Raza, I. G. A. & Clarke, A. J. B. Cell metabolism and autophagy in autoimmunity. Front. Immunol. 12, 681105 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Frasca, D. & Blomberg, B. B. Obesity accelerates age defects in mouse and human B cells. Front. Immunol. 11, 2060 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chapman, N. M. & Chi, H. Metabolic adaptation of lymphocytes in immunity and disease. Immunity 55, 14–30 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Boothby, M. & Rickert, R. C. Metabolic regulation of the immune humoral response. Immunity 46, 743–755 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Caro-Maldonado, A. et al. Metabolic reprogramming is required for antibody production that is suppressed in anergic but exaggerated in chronically BAFF-exposed B cells. J. Immunol. 192, 3626–3636 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cambier, J. C., Gauld, S. B., Merrell, K. T. & Vilen, B. J. B-cell anergy: from transgenic models to naturally occurring anergic B cells? Nat. Rev. Immunol. 7, 633–643 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Galicia-Vázquez, G. & Aloyz, R. Metabolic rewiring beyond Warburg in chronic lymphocytic leukemia: how much do we actually know? Crit. Rev. Oncol. Hematol. 134, 65–70 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Noble, R. A. et al. Simultaneous targeting of glycolysis and oxidative phosphorylation as a therapeutic strategy to treat diffuse large B-cell lymphoma. Br. J. Cancer 127, 937–947 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Weisel, F. J. et al. Germinal center B cells selectively oxidize fatty acids for energy while conducting minimal glycolysis. Nat. Immunol. 21, 331–342 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhou, C. J. et al. Short-chain fatty acids promote immunotherapy by modulating immune regulatory property in B cells. J. Immunol. Res. 2021, 2684361 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tian, G. X. et al. Propionic acid regulates immune tolerant properties in B Cells. J. Cell Mol. Med. 26, 2766–2776 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jiang, S., Yan, W., Wang, S. E. & Baltimore, D. Let-7 suppresses B cell activation through restricting the availability of necessary nutrients. Cell Metab. 27, 393–403.e394 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Le, A. et al. Glucose-independent glutamine metabolism via TCA cycling for proliferation and survival in B cells. Cell Metab. 15, 110–121 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sumikawa, M. H. et al. An enhanced mitochondrial function through glutamine metabolism in plasmablast differentiation in systemic lupus erythematosus. Rheumatol. Oxf. 61, 3049–3059 (2022).

    Article 
    CAS 

    Google Scholar 

  • Mielle, J. et al. Glutamine promotes the generation of B10(+) cells via the mTOR/GSK3 pathway. Eur. J. Immunol. 52, 418–430 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wu, M. et al. Glutamine promotes intestinal SIgA secretion through intestinal microbiota and IL-13. Mol. Nutr. Food Res. 60, 1637–1648 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Infantino, S. et al. Arginine methylation catalyzed by PRMT1 is required for B cell activation and differentiation. Nat. Commun. 8, 891 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hata, K. & Mizuguchi, J. Arginine methylation regulates antibody responses through modulating cell division and isotype switching in B cells. Microbiol. Immunol. 57, 185–192 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dagenais-Lussier, X. et al. Latest developments in tryptophan metabolism: understanding its role in B cell immunity. Cytokine Growth Factor Rev. 59, 111–117 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, Z. et al. Leucine-tRNA-synthase-2-expressing B cells contribute to colorectal cancer immunoevasion. Immunity 55, 1067–1081.e1068 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Liew, P. X. & Kubes, P. The neutrophil’s role during health and disease. Physiol. Rev. 99, 1223–1248 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kolaczkowska, E. & Kubes, P. Neutrophil recruitment and function in health and inflammation. Nat. Rev. Immunol. 13, 159–175 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Herrero-Cervera, A., Soehnlein, O. & Kenne, E. Neutrophils in chronic inflammatory diseases. Cell Mol. Immunol. 19, 177–191 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Curi, R. et al. The critical role of cell metabolism for essential neutrophil functions. Cell Physiol. Biochem 54, 629–647 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Willson, J. A. et al. Neutrophil HIF-1α stabilization is augmented by mitochondrial ROS produced via the glycerol 3-phosphate shuttle. Blood 139, 281–286 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • You, Z. & Chi, H. Lipid metabolism in dendritic cell biology. Immunol. Rev. 317, 137–151 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Macri, C., Pang, E. S., Patton, T. & O’Keeffe, M. Dendritic cell subsets. Semin Cell Dev. Biol. 84, 11–21 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Worbs, T., Hammerschmidt, S. I. & Förster, R. Dendritic cell migration in health and disease. Nat. Rev. Immunol. 17, 30–48 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sen, K. et al. NCoR1 controls immune tolerance in conventional dendritic cells by fine-tuning glycolysis and fatty acid oxidation. Redox Biol. 59, 102575 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Liu, J. et al. CCR7 chemokine receptor-inducible lnc-Dpf3 restrains dendritic cell migration by inhibiting HIF-1α-mediated glycolysis. Immunity 50, 600–615.e615 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Basit, F. & de Vries, I. J. M. Dendritic cells require PINK1-mediated phosphorylation of BCKDE1α to promote fatty acid oxidation for immune function. Front. Immunol. 10, 2386 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rehman, A. et al. Role of fatty-acid synthesis in dendritic cell generation and function. J. Immunol. 190, 4640–4649 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Goretzki, A. et al. Role of glycolysis and fatty acid synthesis in the activation and T cell-modulating potential of dendritic cells stimulated with a TLR5-ligand allergen fusion protein. Int. J. Mol. Sci. 23, 12695 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Herber, D. L. et al. Lipid accumulation and dendritic cell dysfunction in cancer. Nat. Med. 16, 880–886 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Spits, H. et al. Innate lymphoid cells–a proposal for uniform nomenclature. Nat. Rev. Immunol. 13, 145–149 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jacquelot, N., Seillet, C., Vivier, E. & Belz, G. T. Innate lymphoid cells and cancer. Nat. Immunol. 23, 371–379 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Vivier, E. et al. Innate lymphoid cells: 10 Years On. Cell 174, 1054–1066 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gardiner, C. M. NK cell metabolism. J. Leukoc. Biol. 105, 1235–1242 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pelletier, A. & Stockmann, C. The metabolic basis of ILC plasticity. Front. Immunol. 13, 858051 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cong, J. et al. Dysfunction of natural killer cells by FBP1-induced inhibition of glycolysis during lung cancer progression. Cell Metab. 28, 243–255.e245 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hu, X. et al. Downregulation of NK cell activities in Apolipoprotein C-III-induced hyperlipidemia resulting from lipid-induced metabolic reprogramming and crosstalk with lipid-laden dendritic cells. Metabolism 120, 154800 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sheppard, S. et al. Fatty acid oxidation fuels natural killer cell responses against infection and cancer. Proc. Natl Acad. Sci. USA 121, e2319254121 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Koh, J. et al. De novo fatty-acid synthesis protects invariant NKT cells from cell death, thereby promoting their homeostasis and pathogenic roles in airway hyperresponsiveness. Elife 12, RP87536 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kobayashi, T. & Mattarollo, S. R. Natural killer cell metabolism. Mol. Immunol. 115, 3–11 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Son, S. E., Koh, J. M. & Im, D. S. Free fatty acid receptor 4 (FFA4) activation attenuates obese asthma by suppressing adiposity and resolving metaflammation. Biomed. Pharmacother. 174, 116509 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gury-BenAri, M. et al. The spectrum and regulatory landscape of intestinal innate lymphoid cells are shaped by the microbiome. Cell 166, 1231–1246.e1213 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wilhelm, C. et al. Critical role of fatty acid metabolism in ILC2-mediated barrier protection during malnutrition and helminth infection. J. Exp. Med. 213, 1409–1418 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Surace, L. et al. Dichotomous metabolic networks govern human ILC2 proliferation and function. Nat. Immunol. 22, 1367–1374 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Di Luccia, B. et al. ILC3s integrate glycolysis and mitochondrial production of reactive oxygen species to fulfill activation demands. J. Exp. Med. 216, 2231–2241 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fachi, J. L. et al. Hypoxia enhances ILC3 responses through HIF-1α-dependent mechanism. Mucosal Immunol. 14, 828–841 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Golonka, R. M. & Vijay-Kumar, M. Atypical immunometabolism and metabolic reprogramming in liver cancer: Deciphering the role of gut microbiome. Adv. Cancer Res. 149, 171–255 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hay, N. Reprogramming glucose metabolism in cancer: can it be exploited for cancer therapy? Nat. Rev. Cancer 16, 635–649 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chang, C. H. et al. Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell 162, 1229–1241 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dang, Q. et al. Cancer immunometabolism: advent, challenges, and perspective. Mol. Cancer 23, 72 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Singer, K. et al. Immunometabolism in cancer at a glance. Dis. Model Mech. 11, dmm034272 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kamarajugadda, S. et al. Glucose oxidation modulates anoikis and tumor metastasis. Mol. Cell Biol. 32, 1893–1907 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lian, X. et al. Immunometabolic rewiring in tumorigenesis and anti-tumor immunotherapy. Mol. Cancer 21, 27 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xu, K. et al. Glycolytic ATP fuels phosphoinositide 3-kinase signaling to support effector T helper 17 cell responses. Immunity 54, 976–987.e977 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stine, Z. E., Schug, Z. T., Salvino, J. M. & Dang, C. V. Targeting cancer metabolism in the era of precision oncology. Nat. Rev. Drug Discov. 21, 141–162 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mehla, K. & Singh, P. K. Metabolic regulation of macrophage polarization in cancer. Trends Cancer 5, 822–834 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xia, Y. et al. Engineering macrophages for cancer immunotherapy and drug delivery. Adv. Mater. 32, e2002054 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Morrissey, S. M. et al. Tumor-derived exosomes drive immunosuppressive macrophages in a pre-metastatic niche through glycolytic dominant metabolic reprogramming. Cell Metab. 33, 2040–2058.e2010 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shi, Q. et al. Increased glucose metabolism in TAMs fuels O-GlcNAcylation of lysosomal Cathepsin B to promote cancer metastasis and chemoresistance. Cancer Cell 40, 1207–1222.e1210 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lu, Y. et al. MondoA-thioredoxin-interacting protein axis maintains regulatory t-cell identity and function in colorectal cancer microenvironment. Gastroenterology 161, 575–591.e516 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hamaidi, I. et al. Sirt2 inhibition enhances metabolic fitness and effector functions of tumor-reactive T cells. Cell Metab. 32, 420–436.e412 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • He, W. et al. CD155T/TIGIT signaling regulates CD8(+) T-cell metabolism and promotes tumor progression in human gastric cancer. Cancer Res. 77, 6375–6388 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kochenderfer, J. N. & Rosenberg, S. A. Treating B-cell cancer with T cells expressing anti-CD19 chimeric antigen receptors. Nat. Rev. Clin. Oncol. 10, 267–276 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chu, T. W., Kosak, K. M., Shami, P. J. & Kopeček, J. Drug-free macromolecular therapeutics induce apoptosis of patient chronic lymphocytic leukemia cells. Drug Deliv. Transl. Res. 4, 389–394 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Simon-Molas, H., Del Prete, R. & Kabanova, A. Glucose metabolism in B cell malignancies: a focus on glycolysis branching pathways. Mol. Oncol. 18, 1777–1794 (2023).

  • Pi, M. et al. Targeting metabolism to overcome cancer drug resistance: a promising therapeutic strategy for diffuse large B cell lymphoma. Drug. Resist. Updat. 61, 100822 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Poulaki, A. & Giannouli, S. Metabolic swifts govern normal and malignant B cell lymphopoiesis. Int. J. Mol. Sci. 22, 8269 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Müschen, M. Metabolic gatekeepers to safeguard against autoimmunity and oncogenic B cell transformation. Nat. Rev. Immunol. 19, 337–348 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Chen, Z. et al. Characterization of metabolic alterations of chronic lymphocytic leukemia in the lymph node microenvironment. Blood 140, 630–643 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Guo, C. et al. Immunometabolism: a new target for improving cancer immunotherapy. Adv. Cancer Res. 143, 195–253 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Su, P. et al. Enhanced lipid accumulation and metabolism are required for the differentiation and activation of tumor-associated macrophages. Cancer Res. 80, 1438–1450 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, Z. et al. Lipid-associated macrophages in the tumor-adipose microenvironment facilitate breast cancer progression. Oncoimmunology 11, 2085432 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Huggins, D. N. et al. Characterizing macrophage diversity in metastasis-bearing lungs reveals a lipid-associated macrophage subset. Cancer Res. 81, 5284–5295 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, S. et al. S100A4 enhances protumor macrophage polarization by control of PPAR-γ-dependent induction of fatty acid oxidation. J. Immunother. Cancer 9, e002548 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wu, H. et al. Lipid droplet-dependent fatty acid metabolism controls the immune suppressive phenotype of tumor-associated macrophages. EMBO Mol. Med. 11, e10698 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Masetti, M. et al. Lipid-loaded tumor-associated macrophages sustain tumor growth and invasiveness in prostate cancer. J. Exp. Med. 219, e20210564 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, R., Liu, Z., Fan, Z. & Zhan, H. Lipid metabolism reprogramming of CD8(+) T cell and therapeutic implications in cancer. Cancer Lett. 567, 216267 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Xu, S. et al. Uptake of oxidized lipids by the scavenger receptor CD36 promotes lipid peroxidation and dysfunction in CD8(+) T cells in tumors. Immunity 54, 1561–1577.e1567 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sun, H. et al. Single-cell transcriptome analysis indicates fatty acid metabolism-mediated metastasis and immunosuppression in male breast cancer. Nat. Commun. 14, 5590 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Field, C. S. et al. Mitochondrial integrity regulated by lipid metabolism is a cell-intrinsic checkpoint for treg suppressive function. Cell Metab. 31, 422–437.e425 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lim, S. A. et al. Lipid signalling enforces functional specialization of T(reg) cells in tumours. Nature 591, 306–311 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yang, F. & Wan, F. Lipid metabolism in tumor-associated B cells. Adv. Exp. Med. Biol. 1316, 133–147 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sun, L. et al. PPAR-delta modulates membrane cholesterol and cytokine signaling in malignant B cells. Leukemia 32, 184–193 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pallasch, C. P. et al. Targeting lipid metabolism by the lipoprotein lipase inhibitor orlistat results in apoptosis of B-cell chronic lymphocytic leukemia cells. Leukemia 22, 585–592 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Huang, J. et al. The PPARα agonist fenofibrate suppresses B-cell lymphoma in mice by modulating lipid metabolism. Biochim. Biophys. Acta 1831, 1555–1565 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sun, Z., Zhang, L. & Liu, L. Reprogramming the lipid metabolism of dendritic cells in tumor immunomodulation and immunotherapy. Biomed. Pharmacother. 167, 115574 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Niavarani, S. R. et al. Lipid accumulation impairs natural killer cell cytotoxicity and tumor control in the postoperative period. BMC Cancer 19, 823 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tang, W. et al. Aberrant cholesterol metabolic signaling impairs antitumor immunosurveillance through natural killer T cell dysfunction in obese liver. Cell Mol. Immunol. 19, 834–847 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kobayashi, T. et al. Increased lipid metabolism impairs NK cell function and mediates adaptation to the lymphoma environment. Blood 136, 3004–3017 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Li, Z. & Zhang, H. Reprogramming of glucose, fatty acid and amino acid metabolism for cancer progression. Cell Mol. Life Sci. 73, 377–392 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yang, L. et al. Amino acid metabolism in immune cells: essential regulators of the effector functions, and promising opportunities to enhance cancer immunotherapy. J. Hematol. Oncol. 16, 59 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, J. et al. Prediction of prognosis, immunogenicity and efficacy of immunotherapy based on glutamine metabolism in lung adenocarcinoma. Front. Immunol. 13, 960738 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Oh, M. H. et al. Targeting glutamine metabolism enhances tumor-specific immunity by modulating suppressive myeloid cells. J. Clin. Investig. 130, 3865–3884 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Raines, L. N. et al. PERK is a critical metabolic hub for immunosuppressive function in macrophages. Nat. Immunol. 23, 431–445 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Edwards, D. N. et al. Selective glutamine metabolism inhibition in tumor cells improves antitumor T lymphocyte activity in triple-negative breast cancer. J. Clin. Investig. 131, e140100 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Huang, M. et al. Targeting glutamine metabolism to enhance immunoprevention of EGFR-Driven lung cancer. Adv. Sci. 9, e2105885 (2022).

    Article 

    Google Scholar 

  • Kampen, K. R. et al. Translatome analysis reveals altered serine and glycine metabolism in T-cell acute lymphoblastic leukemia cells. Nat. Commun. 10, 2542 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Colegio, O. R. et al. Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature 513, 559–563 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, Z. H. et al. Lactate in the tumour microenvironment: from immune modulation to therapy. EBioMedicine 73, 103627 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jin, M. et al. Tumor-derived lactate creates a favorable niche for tumor via supplying energy source for tumor and modulating the tumor microenvironment. Front. Cell Dev. Biol. 10, 808859 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fang, X. et al. Lactate induces tumor-associated macrophage polarization independent of mitochondrial pyruvate carrier-mediated metabolism. Int. J. Biol. Macromol. 237, 123810 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhang, A. et al. Lactate-induced M2 polarization of tumor-associated macrophages promotes the invasion of pituitary adenoma by secreting CCL17. Theranostics 11, 3839–3852 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • She, X. et al. SETDB1 Methylates MCT1 promoting tumor progression by enhancing the lactate shuttle. Adv. Sci. 10, e2301871 (2023).

    Article 

    Google Scholar 

  • Vadevoo, S. M. P. et al. The macrophage odorant receptor Olfr78 mediates the lactate-induced M2 phenotype of tumor-associated macrophages. Proc. Natl. Acad. Sci. USA 118, e2102434118 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, N. et al. Lactate inhibits ATP6V0d2 expression in tumor-associated macrophages to promote HIF-2α-mediated tumor progression. J. Clin. Investig. 129, 631–646 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yan, C. et al. GPR65 sensing tumor-derived lactate induces HMGB1 release from TAM via the cAMP/PKA/CREB pathway to promote glioma progression. J. Exp. Clin. Cancer Res. 43, 105 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Oberholtzer, N., Quinn, K. M., Chakraborty, P. & Mehrotra, S. New developments in T Cell immunometabolism and implications for cancer immunotherapy. Cells 11, 708 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brand, A. et al. LDHA-associated lactic acid production blunts tumor immunosurveillance by T and NK cells. Cell Metab. 24, 657–671 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Watson, M. J. et al. Metabolic support of tumour-infiltrating regulatory T cells by lactic acid. Nature 591, 645–651 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Anderson, K. G., Stromnes, I. M. & Greenberg, P. D. Obstacles posed by the tumor microenvironment to T cell activity: a case for synergistic therapies. Cancer Cell 31, 311–325 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gu, J. et al. Tumor metabolite lactate promotes tumorigenesis by modulating MOESIN lactylation and enhancing TGF-β signaling in regulatory T cells. Cell Rep. 39, 110986 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ding, R. et al. Lactate modulates RNA splicing to promote CTLA-4 expression in tumor-infiltrating regulatory T cells. Immunity 57, 528–540.e526 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, K., Zhang, Y. & Chen, Z. N. Metabolic interaction: tumor-derived lactate inhibiting CD8(+) T cell cytotoxicity in a novel route. Signal Transduct. Target. Ther. 8, 52 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, Z. et al. Tumor-secreted lactate contributes to an immunosuppressive microenvironment and affects CD8 T-cell infiltration in glioblastoma. Front. Immunol. 14, 894853 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yu, M. & Zhang, S. Influenced tumor microenvironment and tumor immunity by amino acids. Front. Immunol. 14, 1118448 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fu, Q. et al. Tumor-associated macrophage-derived interleukin-23 interlinks kidney cancer glutamine addiction with immune evasion. Eur. Urol. 75, 752–763 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Guo, C. et al. SLC38A2 and glutamine signalling in cDC1s dictate anti-tumour immunity. Nature 620, 200–208 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xiong, J. et al. SLC1A1 mediated glutamine addiction and contributed to natural killer T-cell lymphoma progression with immunotherapeutic potential. EBioMedicine 72, 103614 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, Y. et al. Targeted inhibition of the immunoproteasome blocks endothelial MHC class II antigen presentation to CD4(+) T cells in chronic liver injury. Int. Immunopharmacol. 107, 108639 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Qin, S. et al. Serine protease PRSS23 drives gastric cancer by enhancing tumor associated macrophage infiltration via FGF2. Front. Immunol. 13, 955841 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ma, S. et al. Serine enrichment in tumors promotes regulatory T cell accumulation through sphinganine-mediated regulation of c-Fos. Sci. Immunol. 9, eadg8817 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Morel, L. Immunometabolism in systemic lupus erythematosus. Nat. Rev. Rheumatol. 13, 280–290 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Choi, S. C. et al. Immune cell metabolism in systemic lupus erythematosus. Curr. Rheumatol. Rep. 18, 66 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Takeshima, Y., Iwasaki, Y., Fujio, K. & Yamamoto, K. Metabolism as a key regulator in the pathogenesis of systemic lupus erythematosus. Semin. Arthritis Rheum. 48, 1142–1145 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jing, C. et al. Macrophage metabolic reprogramming presents a therapeutic target in lupus nephritis. Proc. Natl Acad. Sci. USA 117, 15160–15171 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhao, H., Wen, Z. & Xiong, S. Activated lymphocyte-derived DNA drives glucose metabolic adaptation for inducing macrophage inflammatory response in systemic lupus erythematosus. Cells 12, 2093 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, L. X. et al. M2b macrophage polarization and its roles in diseases. J. Leukoc. Biol. 106, 345–358 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Li, W. et al. Targeting T cell activation and lupus autoimmune phenotypes by inhibiting glucose transporters. Front. Immunol. 10, 833 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yin, Y. et al. Glucose oxidation is critical for CD4+ T cell activation in a mouse model of systemic lupus erythematosus. J. Immunol. 196, 80–90 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yin, Y. et al. Normalization of CD4+ T cell metabolism reverses lupus. Sci. Transl. Med. 7, 274ra218 (2015).

    Article 

    Google Scholar 

  • Abboud, G. et al. Glucose requirement of antigen-specific autoreactive B cells and CD4+ T cells. J. Immunol. 210, 377–388 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Scherlinger, M. et al. Phosphofructokinase P fine-tunes T regulatory cell metabolism, function, and stability in systemic autoimmunity. Sci. Adv. 8, eadc9657 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zou, X. et al. Metabolic regulation of follicular helper T cell differentiation in a mouse model of lupus. Immunol. Lett. 247, 13–21 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lin, M. et al. Modulation of PKM2 inhibits follicular helper T cell differentiation and ameliorates inflammation in lupus-prone mice. J. Autoimmun. 145, 103198 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gabriel, C. L. et al. Autoimmune-mediated glucose intolerance in a mouse model of systemic lupus erythematosus. Am. J. Physiol. Endocrinol. Metab. 303, E1313–E1324 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, X. Y. et al. c-Myc-driven glycolysis polarizes functional regulatory B cells that trigger pathogenic inflammatory responses. Signal Transduct. Target Ther. 7, 105 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sun, W. et al. Lipid Metabolism: immune regulation and therapeutic prospectives in systemic lupus erythematosus. Front. Immunol. 13, 860586 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jaroonwitchawan, T. et al. Dysregulation of lipid metabolism in macrophages is responsible for severe endotoxin tolerance in FcgRIIB-deficient lupus mice. Front. Immunol. 11, 959 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Krishnan, S. et al. Alterations in lipid raft composition and dynamics contribute to abnormal T cell responses in systemic lupus erythematosus. J. Immunol. 172, 7821–7831 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jury, E. C. et al. Altered lipid raft-associated signaling and ganglioside expression in T lymphocytes from patients with systemic lupus erythematosus. J. Clin. Investig. 113, 1176–1187 (2004).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zeng, Q. et al. Spleen fibroblastic reticular cell-derived acetylcholine promotes lipid metabolism to drive autoreactive B cell responses. Cell Metab. 35, 837–854.e838 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kono, M., Yoshida, N. & Tsokos, G. C. Amino acid metabolism in lupus. Front. Immunol. 12, 623844 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kono, M. et al. Glutaminase 1 inhibition reduces glycolysis and ameliorates lupus-like disease in mrl/lpr mice and experimental autoimmune encephalomyelitis. Arthritis Rheumatol. 71, 1869–1878 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, X. et al. Inhibition of glutaminolysis ameliorates lupus by regulating T and B cell subsets and downregulating the mTOR/P70S6K/4EBP1 and NLRP3/caspase-1/IL-1β pathways in MRL/lpr mice. Int. Immunopharmacol. 112, 109133 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sharabi, A., Kasper, I. R. & Tsokos, G. C. The serine/threonine protein phosphatase 2A controls autoimmunity. Clin. Immunol. 186, 38–42 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pan, W. et al. The regulatory subunit PPP2R2A of PP2A Enhances Th1 and Th17 differentiation through activation of the GEF-H1/RhoA/ROCK signaling pathway. J. Immunol. 206, 1719–1728 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Crispín, J. C., Apostolidis, S. A., Finnell, M. I. & Tsokos, G. C. Induction of PP2A Bβ, a regulator of IL-2 deprivation-induced T-cell apoptosis, is deficient in systemic lupus erythematosus. Proc. Natl. Acad. Sci. USA 108, 12443–12448 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Meidan, E. et al. Serine/threonine phosphatase PP2A is essential for optimal B cell function. JCI Insight 5, e130655 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kono, M. et al. Decreased expression of serine/arginine-rich splicing factor 1 in T cells from patients with active systemic lupus erythematosus accounts for reduced expression of RasGRP1 and DNA methyltransferase 1. Arthritis Rheumatol. 70, 2046–2056 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Moulton, V. R., Gillooly, A. R. & Tsokos, G. C. Ubiquitination regulates expression of the serine/arginine-rich splicing factor 1 (SRSF1) in normal and systemic lupus erythematosus (SLE) T cells. J. Biol. Chem. 289, 4126–4134 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Katsuyama, T. et al. Splicing factor SRSF1 controls T cell hyperactivity and systemic autoimmunity. J. Clin. Investig. 129, 5411–5423 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Katsuyama, T. et al. Splicing factor SRSF1 controls T cell homeostasis and its decreased levels are linked to lymphopenia in systemic lupus erythematosus. Rheumatology 59, 2146–2155 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Adolph, T. E. et al. The metabolic nature of inflammatory bowel diseases. Nat. Rev. Gastroenterol. Hepatol. 19, 753–767 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Zhuang, H. et al. Tiliroside ameliorates ulcerative colitis by restoring the M1/M2 macrophage balance via the HIF-1α/glycolysis pathway. Front. Immunol. 12, 649463 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Komuro, M. et al. Glucosylceramide in T cells regulates the pathology of inflammatory bowel disease. Biochem. Biophys. Res. Commun. 599, 24–30 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lee, H., Jeon, J. H. & Kim, E. S. Mitochondrial dysfunctions in T cells: focus on inflammatory bowel disease. Front. Immunol. 14, 1219422 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lv, Q. et al. Costunolide ameliorates colitis via specific inhibition of HIF1α/glycolysis-mediated Th17 differentiation. Int. Immunopharmacol. 97, 107688 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lv, Q. et al. Norisoboldine, a natural AhR agonist, promotes Treg differentiation and attenuates colitis via targeting glycolysis and subsequent NAD(+)/SIRT1/SUV39H1/H3K9me3 signaling pathway. Cell Death Dis. 9, 258 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lu, H. et al. Cyclosporine modulates neutrophil functions via the SIRT6-HIF-1α-glycolysis axis to alleviate severe ulcerative colitis. Clin. Transl. Med. 11, e334 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Karaskova, E. et al. Role of adipose tissue in inflammatory bowel disease. Int. J. Mol. Sci. 22, 4226 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xu, J. et al. Inhibition of FABP5 attenuates inflammatory bowel disease by modulating macrophage alternative activation. Biochem. Pharm. 219, 115974 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Liang, G. et al. Fatty acid oxidation promotes apoptotic resistance and proinflammatory phenotype of CD4(+) tissue-resident memory t cells in crohn’s disease. Cell Mol. Gastroenterol. Hepatol. 17, 939–964 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, Y. et al. Human RIPK1 deficiency causes combined immunodeficiency and inflammatory bowel diseases. Proc. Natl. Acad. Sci. USA 116, 970–975 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Honjo, H. et al. RIPK2 as a new therapeutic target in inflammatory bowel diseases. Front. Pharm. 12, 650403 (2021).

    Article 
    CAS 

    Google Scholar 

  • Parkhouse, R. & Monie, T. P. Dysfunctional crohn’s disease-associated NOD2 polymorphisms Cannot be reliably predicted on the basis of RIPK2 binding or membrane association. Front. Immunol. 6, 521 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lai, Y. et al. Discovery of a novel RIPK2 inhibitor for the treatment of inflammatory bowel disease. Biochem. Pharm. 214, 115647 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lee, S. H. et al. Inhibition of RIPK3 pathway attenuates intestinal inflammation and cell death of inflammatory bowel disease and suppresses necroptosis in peripheral mononuclear cells of ulcerative colitis patients. Immune Netw. 20, e16 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Leber, A. et al. Activation of NLRX1 by NX-13 alleviates inflammatory bowel disease through immunometabolic mechanisms in CD4(+) T cells. J. Immunol. 203, 3407–3415 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Liu, Z. et al. The kinase LRRK2 is a regulator of the transcription factor NFAT that modulates the severity of inflammatory bowel disease. Nat. Immunol. 12, 1063–1070 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhou, Z. et al. Increased stromal PFKFB3-mediated glycolysis in inflammatory bowel disease contributes to intestinal inflammation. Front. Immunol. 13, 966067 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ni, S., Liu, Y., Zhong, J. & Shen, Y. Inhibition of LncRNA-NEAT1 alleviates intestinal epithelial cells (IECs) dysfunction in ulcerative colitis by maintaining the homeostasis of the glucose metabolism through the miR-410-3p-LDHA axis. Bioengineered 13, 8961–8971 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yan, D. et al. Fatty acids and lipid mediators in inflammatory bowel disease: from mechanism to treatment. Front. Immunol. 14, 1286667 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sands, B. E. et al. Lipid profiles in patients with ulcerative colitis receiving tofacitinib-implications for cardiovascular risk and patient management. Inflamm. Bowel Dis. 27, 797–808 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Qiu, J. et al. Metabolic control of autoimmunity and tissue inflammation in rheumatoid arthritis. Front. Immunol. 12, 652771 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Weyand, C. M. & Goronzy, J. J. Immunometabolism in early and late stages of rheumatoid arthritis. Nat. Rev. Rheumatol. 13, 291–301 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pucino, V. et al. Metabolic checkpoints in rheumatoid arthritis. Front. Physiol. 11, 347 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gan, P. R. et al. Glycolysis, a driving force of rheumatoid arthritis. Int. Immunopharmacol. 132, 111913 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zezina, E., Sercan-Alp, O., Herrmann, M. & Biesemann, N. Glucose transporter 1 in rheumatoid arthritis and autoimmunity. Wiley Interdiscip. Rev. Syst. Biol. Med. 12, e1483 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kim, B. et al. Cytoplasmic zinc promotes IL-1β production by monocytes and macrophages through mTORC1-induced glycolysis in rheumatoid arthritis. Sci. Signal 15, eabi7400 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cai, W. et al. The glycolysis inhibitor 2-deoxyglucose ameliorates adjuvant-induced arthritis by regulating macrophage polarization in an AMPK-dependent manner. Mol. Immunol. 140, 186–195 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Umar, S. et al. Metabolic regulation of RA macrophages is distinct from RA fibroblasts and blockade of glycolysis alleviates inflammatory phenotype in both cell types. Cell Mol. Life Sci. 78, 7693–7707 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Harshan, S., Dey, P. & Raghunathan, S. Altered transcriptional regulation of glycolysis in circulating cd8(+) t cells of rheumatoid arthritis patients. Genes 13, 1216 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Souto-Carneiro, M. M. et al. Effect of increased lactate dehydrogenase a activity and aerobic glycolysis on the proinflammatory profile of autoimmune CD8+ T cells in rheumatoid arthritis. Arthritis Rheumatol. 72, 2050–2064 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zeng, Q. H. et al. B cells polarize pathogenic inflammatory T helper subsets through ICOSL-dependent glycolysis. Sci. Adv. 6, eabb6296 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kvacskay, P. et al. Increase of aerobic glycolysis mediated by activated T helper cells drives synovial fibroblasts towards an inflammatory phenotype: new targets for therapy? Arthritis Res. Ther. 23, 56 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Suwa, Y., Nagafuchi, Y., Yamada, S. & Fujio, K. The role of dendritic cells and their immunometabolism in rheumatoid arthritis. Front. Immunol. 14, 1161148 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Qi, J. et al. IL-27 enhances peripheral B cell glycolysis of rheumatoid arthritis patients via activating mTOR signaling. Int. Immunopharmacol. 121, 110532 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bockermann, R., Schubert, D., Kamradt, T. & Holmdahl, R. Induction of a B-cell-dependent chronic arthritis with glucose-6-phosphate isomerase. Arthritis Res. Ther. 7, R1316–R1324 (2005).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kraus, F. V. et al. Reduction of proinflammatory effector functions through remodeling of fatty acid metabolism in CD8+ T cells from rheumatoid arthritis patients. Arthritis Rheumatol. 75, 1098–1109 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Na, H. S. et al. Th17 and IL-17 cause acceleration of inflammation and fat loss by inducing α(2)-glycoprotein 1 (AZGP1) in rheumatoid arthritis with high-fat diet. Am. J. Pathol. 187, 1049–1058 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pucino, V., Bombardieri, M., Pitzalis, C. & Mauro, C. Lactate at the crossroads of metabolism, inflammation, and autoimmunity. Eur. J. Immunol. 47, 14–21 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yi, O. et al. Lactate metabolism in rheumatoid arthritis: Pathogenic mechanisms and therapeutic intervention with natural compounds. Phytomedicine 100, 154048 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pucino, V. et al. Differential effect of lactate on synovial fibroblast and macrophage effector functions. Front. Immunol. 14, 1183825 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pucino, V. et al. Lactate buildup at the site of chronic inflammation promotes disease by inducing Cd4(+) T Cell metabolic rewiring. Cell Metab. 30, 1055–1074.e1058 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Haas, R. et al. Lactate regulates metabolic and pro-inflammatory circuits in control of T cell migration and effector functions. PLoS Biol. 13, e1002202 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Marcus, R. What is multiple sclerosis? JAMA 328, 2078 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Oh, J., Vidal-Jordana, A. & Montalban, X. Multiple sclerosis: clinical aspects. Curr. Opin. Neurol. 31, 752–759 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Yamout, B. I. & Alroughani, R. Multiple sclerosis. Semin Neurol. 38, 212–225 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Kunkl, M. et al. CD28 autonomous signaling up-regulates C-Myc expression and promotes glycolysis enabling inflammatory T cell responses in multiple sclerosis. Cells 8, 575 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • La Rocca, C. et al. Immunometabolic profiling of T cells from patients with relapsing-remitting multiple sclerosis reveals an impairment in glycolysis and mitochondrial respiration. Metabolism 77, 39–46 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shriver, L. P. & Manchester, M. Inhibition of fatty acid metabolism ameliorates disease activity in an animal model of multiple sclerosis. Sci. Rep. 1, 79 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Martin-Gutierrez, L. et al. Dysregulated lipid metabolism networks modulate T-cell function in people with relapsing remitting multiple sclerosis. Clin. Exp. Immunol. 217, 204–218 (2024).

  • Kamermans, A. et al. Reduced angiopoietin-like 4 expression in multiple sclerosis lesions facilitates lipid uptake by phagocytes via modulation of lipoprotein-lipase activity. Front. Immunol. 10, 950 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Werner, P., Pitt, D. & Raine, C. S. Multiple sclerosis: altered glutamate homeostasis in lesions correlates with oligodendrocyte and axonal damage. Ann. Neurol. 50, 169–180 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chrobok, N. L. et al. Tissue transglutaminase appears in monocytes and macrophages but not in lymphocytes in white matter multiple sclerosis lesions. J. Neuropathol. Exp. Neurol. 78, 492–500 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • van Strien, M. E. et al. Tissue transglutaminase contributes to experimental multiple sclerosis pathogenesis and clinical outcome by promoting macrophage migration. Brain. Behav. Immun. 50, 141–154 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Negrotto, L. & Correale, J. Amino acid catabolism in multiple sclerosis affects immune homeostasis. J. Immunol. 198, 1900–1909 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Engin, A. The definition and prevalence of obesity and metabolic syndrome. Adv. Exp. Med. Biol. 960, 1–17 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Qi, X. et al. Multifaceted roles of T cells in obesity and obesity-related complications: a narrative review. Obes. Rev. e13621, (2023).

  • Sharma, M. et al. Enhanced glycolysis and HIF-1α activation in adipose tissue macrophages sustains local and systemic interleukin-1β production in obesity. Sci. Rep. 10, 5555 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Weisberg, S. P. et al. Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Investig. 112, 1796–1808 (2003).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kawanishi, N., Yano, H., Yokogawa, Y. & Suzuki, K. Exercise training inhibits inflammation in adipose tissue via both suppression of macrophage infiltration and acceleration of phenotypic switching from M1 to M2 macrophages in high-fat-diet-induced obese mice. Exerc. Immunol. Rev. 16, 105–118 (2010).

    PubMed 

    Google Scholar 

  • Murray, P. J. & Wynn, T. A. Protective and pathogenic functions of macrophage subsets. Nat. Rev. Immunol. 11, 723–737 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lumeng, C. N., Bodzin, J. L. & Saltiel, A. R. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J. Clin. Investig. 117, 175–184 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Thomas, D. & Apovian, C. Macrophage functions in lean and obese adipose tissue. Metabolism 72, 120–143 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schmidt, V., Hogan, A. E., Fallon, P. G. & Schwartz, C. Obesity-mediated immune modulation: one step forward, (Th)2 steps back. Front. Immunol. 13, 932893 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • SantaCruz-Calvo, S. et al. Adaptive immune cells shape obesity-associated type 2 diabetes mellitus and less prominent comorbidities. Nat. Rev. Endocrinol. 18, 23–42 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Freemerman, A. J. et al. Metabolic reprogramming of macrophages: glucose transporter 1 (GLUT1)-mediated glucose metabolism drives a proinflammatory phenotype. J. Biol. Chem. 289, 7884–7896 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dror, E. et al. Postprandial macrophage-derived IL-1β stimulates insulin, and both synergistically promote glucose disposal and inflammation. Nat. Immunol. 18, 283–292 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hao, S. et al. Goliath induces inflammation in obese mice by linking fatty acid β-oxidation to glycolysis. EMBO Rep. 24, e56932 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ying, W. et al. Adipose tissue B2 cells promote insulin resistance through leukotriene LTB4/LTB4R1 signaling. J. Clin. Investig. 127, 1019–1030 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xu, X. et al. Obesity activates a program of lysosomal-dependent lipid metabolism in adipose tissue macrophages independently of classic activation. Cell Metab. 18, 816–830 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, C. et al. STAT3 activation-induced fatty acid oxidation in CD8(+) T effector cells is critical for obesity-promoted breast tumor growth. Cell Metab. 31, 148–161.e145 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Endo, Y. et al. Obesity drives Th17 cell differentiation by inducing the lipid metabolic kinase, ACC1. Cell Rep. 12, 1042–1055 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chen, I. C. et al. High-fat diet-induced obesity alters dendritic cell homeostasis by enhancing mitochondrial fatty acid oxidation. J. Immunol. 209, 69–76 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Engin, A. B. Adipocyte-macrophage cross-talk in obesity. Adv. Exp. Med. Biol. 960, 327–343 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Eder, K., Baffy, N., Falus, A. & Fulop, A. K. The major inflammatory mediator interleukin-6 and obesity. Inflamm. Res. 58, 727–736 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • El-Kadre, L. J. & Tinoco, A. C. Interleukin-6 and obesity: the crosstalk between intestine, pancreas and liver. Curr. Opin. Clin. Nutr. Metab. Care 16, 564–568 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Bobbo, V. C. et al. Interleukin-6 actions in the hypothalamus protects against obesity and is involved in the regulation of neurogenesis. J. Neuroinflamm. 18, 192 (2021).

    Article 
    CAS 

    Google Scholar 

  • Pacifico, L. et al. Increased T-helper interferon-gamma-secreting cells in obese children. Eur. J. Endocrinol. 154, 691–697 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Yarla, N. S., Polito, A. & Peluso, I. Effects of Olive Oil on TNF-α and IL-6 in humans: implication in obesity and frailty. Endocr. Metab. Immune. Disord. Drug Targets 18, 63–74 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wu, P. et al. Serum TNF-α, GTH and MDA of high-fat diet-induced obesity and obesity resistant rats. Saudi Pharm. J. 24, 333–336 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Huber, J. et al. CC chemokine and CC chemokine receptor profiles in visceral and subcutaneous adipose tissue are altered in human obesity. J. Clin. Endocrinol. Metab. 93, 3215–3221 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kopasov, A. E., Blokhin, S. N., Volkova, E. N. & Morozov, S. G. Chemokine expression in neutrophils and subcutaneous adipose tissue cells obtained during abdominoplasty from patients with obesity and normal body weight. Bull. Exp. Biol. Med. 167, 728–731 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dommel, S. & Blüher, M. Does C-C motif chemokine ligand 2 (CCL2) link obesity to a pro-inflammatory state? Int. J. Mol. Sci. 22, 1500 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ullah, A. et al. A narrative review: CXC chemokines influence immune surveillance in obesity and obesity-related diseases: Type 2 diabetes and nonalcoholic fatty liver disease. Rev. Endocr. Metab. Disord. 24, 611–631 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Xia, C., Rao, X. & Zhong, J. Role of T lymphocytes in type 2 diabetes and diabetes-associated inflammation. J. Diab. Res. 2017, 6494795 (2017).

    Google Scholar 

  • Ehses, J. A. et al. Increased number of islet-associated macrophages in type 2 diabetes. Diabetes 56, 2356–2370 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Eguchi, K. & Manabe, I. Macrophages and islet inflammation in type 2 diabetes. Diab. Obes. Metab. 15, 152–158 (2013).

    Article 
    CAS 

    Google Scholar 

  • Kraakman, M. J., Murphy, A. J., Jandeleit-Dahm, K. & Kammoun, H. L. Macrophage polarization in obesity and type 2 diabetes: weighing down our understanding of macrophage function? Front. Immunol. 5, 470 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ni, H. X., Yu, N. J. & Yang, X. H. The study of ginsenoside on PPARgamma expression of mononuclear macrophage in type 2 diabetes. Mol. Biol. Rep. 37, 2975–2979 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Odegaard, J. I. et al. Macrophage-specific PPARgamma controls alternative activation and improves insulin resistance. Nature 447, 1116–1120 (2007).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Miya, A. et al. Impact of glucose loading on variations in CD4(+) and CD8(+) T cells in japanese participants with or without type 2 diabetes. Front. Endocrinol. 9, 81 (2018).

    Article 

    Google Scholar 

  • Raphael, I., Nalawade, S., Eagar, T. N. & Forsthuber, T. G. T cell subsets and their signature cytokines in autoimmune and inflammatory diseases. Cytokine 74, 5–17 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Li, J. et al. Effect of type 2 diabetes mellitus and periodontitis on the Th1/Th2 and Th17/Treg paradigm. Am. J. Dent. 35, 55–60 (2022).

    PubMed 

    Google Scholar 

  • Touch, S., Clément, K. & André, S. T cell populations and functions are altered in human obesity and Type 2 diabetes. Curr. Diab Rep. 17, 81 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Abdel-Moneim, A., Bakery, H. H. & Allam, G. The potential pathogenic role of IL-17/Th17 cells in both type 1 and type 2 diabetes mellitus. Biomed. Pharmacother. 101, 287–292 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • McLaughlin, T. et al. T-cell profile in adipose tissue is associated with insulin resistance and systemic inflammation in humans. Arterioscler. Thromb. Vasc. Biol. 34, 2637–2643 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Qiao, Y. C. et al. Changes of regulatory T cells and of proinflammatory and immunosuppressive cytokines in patients with type 2 diabetes mellitus: a systematic review and meta-analysis. J. Diab. Res. 2016, 3694957 (2016).

    Google Scholar 

  • Matsuura, Y. et al. Diabetes suppresses glucose uptake and glycolysis in macrophages. Circ. Res. 130, 779–781 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nicholas, D. A. et al. Fatty acid metabolites combine with reduced β oxidation to activate Th17 inflammation in human type 2 diabetes. Cell Metab. 30, 447–461.e445 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kristiansen, O. P. & Mandrup-Poulsen, T. Interleukin-6 and diabetes: the good, the bad, or the indifferent? Diabetes 54, S114–S124 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Akbari, M. & Hassan-Zadeh, V. IL-6 signalling pathways and the development of type 2 diabetes. Inflammopharmacology 26, 685–698 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rehman, K. et al. Role of interleukin-6 in development of insulin resistance and type 2 diabetes mellitus. Crit. Rev. Eukaryot. Gene Expr. 27, 229–236 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Koshino, A. et al. Interleukin-6 and cardiovascular and kidney outcomes in patients with type 2 diabetes: new insights from CANVAS. Diab. Care 45, 2644–2652 (2022).

    Article 
    CAS 

    Google Scholar 

  • Alharby, H. et al. Association of lipid peroxidation and interleukin-6 with carotid atherosclerosis in type 2 diabetes. Cardiovasc. Endocrinol. Metab. 8, 73–76 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yanik, B. M., Dauch, J. R. & Cheng, H. T. Interleukin-10 reduces neurogenic inflammation and pain behavior in a mouse model of type 2 diabetes. J. Pain. Res. 13, 3499–3512 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Banerjee, M. & Saxena, M. Interleukin-1 (IL-1) family of cytokines: role in type 2 diabetes. Clin. Chim. Acta 413, 1163–1170 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Maedler, K., Dharmadhikari, G., Schumann, D. M. & Størling, J. Interleukin-1 beta targeted therapy for type 2 diabetes. Expert Opin. Biol. Ther. 9, 1177–1188 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Suri, S. et al. Role of interleukin-2 and interleukin-18 in newly diagnosed type 2 diabetes mellitus. J. Basic Clin. Physiol. Pharm. 33, 185–190 (2021).

    Article 

    Google Scholar 

  • Zaharieva, E. et al. Interleukin-18 serum level is elevated in type 2 diabetes and latent autoimmune diabetes. Endocr. Connect. 7, 179–185 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Li, L. et al. Association between interleukin-19 and angiopoietin-2 with vascular complications in type 2 diabetes. J. Diab. Investig. 7, 895–900 (2016).

    Article 
    CAS 

    Google Scholar 

  • Gurău, F. et al. Plasma levels of interleukin-38 in healthy aging and in type 2 diabetes. Diab. Res. Clin. Pract. 171, 108585 (2021).

    Article 

    Google Scholar 

  • Nussrat, S. W. & Ad’hiah, A. H. Interleukin-39 is a novel cytokine associated with type 2 diabetes mellitus and positively correlated with body mass index. Endocrinol. Diab. Metab. 6, e409 (2023).

    Article 
    CAS 

    Google Scholar 

  • Halimi, A. et al. The relation between serum levels of interleukin 10 and interferon-gamma with oral candidiasis in type 2 diabetes mellitus patients. BMC Endocr. Disord. 22, 296 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hammad, R. et al. T-Natural killers and interferon gamma/interleukin 4 in augmentation of infection in foot ulcer in type 2 diabetes. Diab. Metab. Syndr. Obes. 14, 1897–1908 (2021).

    Article 

    Google Scholar 

  • Stalenhoef, J. E. et al. The role of interferon-gamma in the increased tuberculosis risk in type 2 diabetes mellitus. Eur. J. Clin. Microbiol. Infect. Dis. 27, 97–103 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Syal, K., Srinivasan, A. & Banerjee, D. VDR, RXR, coronin-1 and interferonγ levels in PBMCs of type-2 diabetes patients: molecular link between diabetes and tuberculosis. Indian J. Clin. Biochem. 30, 323–328 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chen, Y. L. et al. Serum TNF-α concentrations in type 2 diabetes mellitus patients and diabetic nephropathy patients: a systematic review and meta-analysis. Immunol. Lett. 186, 52–58 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lampropoulou, I. T. et al. TNF-α and microalbuminuria in patients with type 2 diabetes mellitus. J. Diab. Res. 2014, 394206 (2014).

    Google Scholar 

  • Wu, J. et al. Urinary TNF-α and NGAL are correlated with the progression of nephropathy in patients with type 2 diabetes. Exp. Ther. Med. 6, 1482–1488 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Herder, C. et al. Chemokines as risk factors for type 2 diabetes: results from the MONICA/KORA Augsburg study, 1984-2002. Diabetologia 49, 921–929 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pan, X., Kaminga, A. C., Wen, S. W. & Liu, A. Chemokines in prediabetes and type 2 diabetes: a meta-analysis. Front. Immunol. 12, 622438 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bala, M. et al. Type 2 diabetes and lipoprotein metabolism affect LPS-induced cytokine and chemokine release in primary human monocytes. Exp. Clin. Endocrinol. Diab. 119, 370–376 (2011).

    Article 
    CAS 

    Google Scholar 

  • Matsushita, Y. et al. Serum C-X-C motif chemokine ligand 14 levels are associated with serum C-peptide and fatty liver index in type 2 diabetes mellitus patients. J. Diab. Investig. 12, 1042–1049 (2021).

    Article 
    CAS 

    Google Scholar 

  • Friedman, S. L., Neuschwander-Tetri, B. A., Rinella, M. & Sanyal, A. J. Mechanisms of NAFLD development and therapeutic strategies. Nat. Med. 24, 908–922 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Barreby, E., Chen, P. & Aouadi, M. Macrophage functional diversity in NAFLD—more than inflammation. Nat. Rev. Endocrinol. 18, 461–472 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ioannou, G. N. The role of cholesterol in the pathogenesis of NASH. Trends Endocrinol. Metab. 27, 84–95 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Govaere, O. et al. Macrophage scavenger receptor 1 mediates lipid-induced inflammation in non-alcoholic fatty liver disease. J. Hepatol. 76, 1001–1012 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mridha, A. R. et al. NLRP3 inflammasome blockade reduces liver inflammation and fibrosis in experimental NASH in mice. J. Hepatol. 66, 1037–1046 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chatterjee, S. et al. Leptin is key to peroxynitrite-mediated oxidative stress and Kupffer cell activation in experimental non-alcoholic steatohepatitis. J. Hepatol. 58, 778–784 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kazankov, K. et al. The role of macrophages in nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Nat. Rev. Gastroenterol. Hepatol. 16, 145–159 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Li, J. et al. Resolvin D1 mitigates non-alcoholic steatohepatitis by suppressing the TLR4-MyD88-mediated NF-κB and MAPK pathways and activating the Nrf2 pathway in mice. Int. Immunopharmacol. 88, 106961 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Schwabe, R. F., Tabas, I. & Pajvani, U. B. Mechanisms of fibrosis development in nonalcoholic steatohepatitis. Gastroenterology 158, 1913–1928 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mao, T., Yang, R., Luo, Y. & He, K. Crucial role of T cells in NAFLD-related disease: a review and prospect. Front Endocrinol. 13, 1051076 (2022).

    Article 

    Google Scholar 

  • Belikov, A. V., Schraven, B. & Simeoni, L. T cells and reactive oxygen species. J. Biomed. Sci. 22, 85 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chávez, M. D. & Tse, H. M. Targeting mitochondrial-derived reactive oxygen species in T cell-mediated autoimmune diseases. Front. Immunol. 12, 703972 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Racanelli, V. & Rehermann, B. The liver as an immunological organ. Hepatology 43, S54–S62 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Deng, C. J. et al. Role of B lymphocytes in the pathogenesis of NAFLD: a 2022 update. Int. J. Mol. Sci. 23, (2022).

  • Barrow, F. et al. Microbiota-driven activation of intrahepatic B cells aggravates NASH through innate and adaptive signaling. Hepatology 74, 704–722 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Miyake, T. et al. B cell-activating factor is associated with the histological severity of nonalcoholic fatty liver disease. Hepatol. Int 7, 539–547 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Kanemitsu-Okada, K. et al. Role of B cell-activating factor in fibrosis progression in a murine model of non-alcoholic steatohepatitis. Int. J. Mol. Sci. 24, 2509 (2023).

  • Barrow, F., Khan, S., Wang, H. & Revelo, X. S. The emerging role of B cells in the pathogenesis of NAFLD. Hepatology 74, 2277–2286 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Bruzzì, S. et al. B2-Lymphocyte responses to oxidative stress-derived antigens contribute to the evolution of nonalcoholic fatty liver disease (NAFLD). Free Radic. Biol. Med. 124, 249–259 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Schmidt-Arras, D. & Rose-John, S. IL-6 pathway in the liver: from physiopathology to therapy. J. Hepatol. 64, 1403–1415 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Drummer, C. 4th et al. Caspase-11 promotes high-fat diet-induced NAFLD by increasing glycolysis, OXPHOS, and pyroptosis in macrophages. Front. Immunol. 14, 1113883 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Inomata, Y. et al. Downregulation of miR-122-5p activates glycolysis via PKM2 in Kupffer cells of rat and mouse models of non-alcoholic steatohepatitis. Int. J. Mol. Sci. 23, 5230 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dong, T. et al. Activation of GPR3-β-arrestin2-PKM2 pathway in Kupffer cells stimulates glycolysis and inhibits obesity and liver pathogenesis. Nat. Commun. 15, 807 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fan, N. et al. Covalent Inhibition of pyruvate kinase M2 reprograms metabolic and inflammatory pathways in hepatic macrophages against non-alcoholic fatty liver disease. Int. J. Biol. Sci. 18, 5260–5275 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Darmadi, D. & Ruslie, R. H. Association between serum interleukin (IL)-12 level and severity of non-alcoholic fatty liver disease (NAFLD). Rom. J. Intern. Med. 59, 66–72 (2021).

    PubMed 

    Google Scholar 

  • Baselli, G. A. et al. Liver transcriptomics highlights interleukin-32 as novel NAFLD-related cytokine and candidate biomarker. Gut 69, 1855–1866 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cao, J. et al. Serum interleukin-38 levels correlated with insulin resistance, liver injury and lipids in non-alcoholic fatty liver disease. Lipids Health Dis. 21, 70 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wieckowska, A. et al. Increased hepatic and circulating interleukin-6 levels in human nonalcoholic steatohepatitis. Am. J. Gastroenterol. 103, 1372–1379 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Widjaja, A. A. et al. Inhibiting Interleukin 11 signaling reduces hepatocyte death and liver fibrosis, inflammation, and steatosis in mouse models of nonalcoholic steatohepatitis. Gastroenterology 157, 777–792.e714 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cook, S. A. & Schafer, S. Hiding in plain sight: interleukin-11 emerges as a master regulator of fibrosis, tissue integrity, and stromal inflammation. Annu. Rev. Med. 71, 263–276 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Li, S., Chen, L. & Lv, G. Interleukin-6 receptor blockade can increase the risk of nonalcoholic fatty liver disease: indications from mendelian randomization. Front. Pharm. 13, 905936 (2022).

    Article 
    CAS 

    Google Scholar 

  • He, S. et al. Interleukin-17 weakens the NAFLD/NASH process by facilitating intestinal barrier restoration depending on the gut microbiota. mBio 13, e0368821 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Gomes, A. L. et al. Metabolic inflammation-associated IL-17A causes non-alcoholic steatohepatitis and hepatocellular carcinoma. Cancer Cell 30, 161–175 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hwang, S. et al. Interleukin-22 ameliorates neutrophil-driven nonalcoholic steatohepatitis through multiple targets. Hepatology 72, 412–429 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ghazarian, M. et al. Type I interferon responses drive intrahepatic t cells to promote metabolic syndrome. Sci. Immunol. 2, eaai7616 (2017).

  • Møhlenberg, M. et al. The presence of interferon affects the progression of non-alcoholic fatty liver disease. Genes Immun. 23, 157–165 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Wieser, V. et al. Adipose type I interferon signalling protects against metabolic dysfunction. Gut 67, 157–165 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kakino, S. et al. Pivotal role of TNF-α in the development and progression of nonalcoholic fatty liver disease in a murine model. Horm. Metab. Res. 50, 80–87 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tiegs, G. & Horst, A. K. TNF in the liver: targeting a central player in inflammation. Semin. Immunopathol. 44, 445–459 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wandrer, F. et al. TNF-Receptor-1 inhibition reduces liver steatosis, hepatocellular injury and fibrosis in NAFLD mice. Cell Death Dis. 11, 212 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Morikawa, R. et al. Role of CC chemokine receptor 9 in the progression of murine and human non-alcoholic steatohepatitis. J. Hepatol. 74, 511–521 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kriss, M. et al. Increased hepatic and circulating chemokine and osteopontin expression occurs early in human NAFLD development. PLoS One 15, e0236353 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xu, L., Kitade, H., Ni, Y. & Ota, T. Roles of chemokines and chemokine receptors in obesity-associated insulin resistance and nonalcoholic fatty liver disease. Biomolecules 5, 1563–1579 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Roh, Y. S. & Seki, E. Chemokines and chemokine receptors in the development of NAFLD. Adv. Exp. Med. Biol. 1061, 45–53 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chen, W., Zhang, J., Fan, H. N. & Zhu, J. S. Function and therapeutic advances of chemokine and its receptor in nonalcoholic fatty liver disease. Ther. Adv. Gastroenterol. 11, 1756284818815184 (2018).

    Article 

    Google Scholar 

  • Braunersreuther, V., Viviani, G. L., Mach, F. & Montecucco, F. Role of cytokines and chemokines in non-alcoholic fatty liver disease. World J. Gastroenterol. 18, 727–735 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xu, L. et al. CC chemokine ligand 3 deficiency ameliorates diet-induced steatohepatitis by regulating liver macrophage recruitment and M1/M2 status in mice. Metabolism 125, 154914 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hanson, A. et al. Chemokine ligand 20 (CCL20) expression increases with NAFLD stage and hepatic stellate cell activation and is regulated by miR-590-5p. Cytokine 123, 154789 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fan, Z. et al. C-C motif chemokine CCL11 is a novel regulator and a potential therapeutic target in non-alcoholic fatty liver disease. JHEP Rep. 5, 100805 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Qi, J. et al. CXCL5 promotes lipotoxicity of hepatocytes through upregulating NLRP3/Caspase-1/IL-1β signaling in Kupffer cells and exacerbates nonalcoholic steatohepatitis in mice. Int. Immunopharmacol. 123, 110752 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zou, Y. et al. CXCL6 promotes the progression of NAFLD through regulation of PPARα. Cytokine 174, 156459 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhou, C. et al. FABP4 in LSECs promotes CXCL10-mediated macrophage recruitment and M1 polarization during NAFLD progression. Biochim. Biophys. Acta Mol. Basis Dis. 1869, 166810 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Russell, D. G., Huang, L. & VanderVen, B. C. Immunometabolism at the interface between macrophages and pathogens. Nat. Rev. Immunol. 19, 291–304 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, C. et al. HIF1α-dependent glycolysis promotes macrophage functional activities in protecting against bacterial and fungal infection. Sci. Rep. 8, 3603 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lacey, C. A. et al. MyD88-dependent glucose restriction and itaconate production control brucella infection. Infect. Immun. 89, e0015621 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Rahman, A. N. et al. Elevated glycolysis imparts functional ability to CD8(+) T cells in HIV infection. Life Sci. Alliance 4, e202101081 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kavanagh Williamson, M. et al. Upregulation of glucose uptake and hexokinase activity of primary human CD4+ T cells in response to infection with HIV-1. Viruses 10, 114 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Clerc, I. et al. Entry of glucose- and glutamine-derived carbons into the citric acid cycle supports early steps of HIV-1 infection in CD4 T cells. Nat. Metab. 1, 717–730 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sun, Z. et al. CD160 Promotes NK cell functions by upregulating glucose metabolism and negatively correlates With HIV disease progression. Front. Immunol. 13, 854432 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Modi, N. et al. BRD4 regulates glycolysis-dependent Nos2 expression in macrophages upon H pylori infection. Cell Mol. Gastroenterol. Hepatol. 17, 292–308.e291 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Codo, A. C. et al. Elevated glucose levels favor SARS-CoV-2 infection and monocyte response through a hif-1α/glycolysis-dependent axis. Cell Metab. 32, 437–446.e435 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stüve, P. et al. De novo fatty acid synthesis during mycobacterial infection is a prerequisite for the function of highly proliferative T cells, but not for dendritic cells or macrophages. Front. Immunol. 9, 495 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ibitokou, S. A. et al. Early inhibition of fatty acid synthesis reduces generation of memory precursor effector T cells in chronic infection. J. Immunol. 200, 643–656 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Matsushita, M. et al. T cell lipid peroxidation induces ferroptosis and prevents immunity to infection. J. Exp. Med. 212, 555–568 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Karinch, A. M. et al. Glutamine metabolism in sepsis and infection. J. Nutr. 131, 2535S–2538S (2001). discussion 2550S-2531S.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jiang, Q. et al. Glutamine is required for M1-like polarization of macrophages in response to Mycobacterium tuberculosis infection. mBio 13, e0127422 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Koeken, V. et al. Role of glutamine metabolism in host defense against mycobacterium tuberculosis infection. J. Infect. Dis. 219, 1662–1670 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • DeBerge, M., Chaudhary, R., Schroth, S. & Thorp, E. B. Immunometabolism at the heart of cardiovascular disease. JACC Basic Transl. Sci. 8, 884–904 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gaddis, D. E. et al. Atherosclerosis impairs naive CD4 T-cell responses via disruption of glycolysis. Arterioscler Thromb. Vasc. Biol. 41, 2387–2398 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, L. et al. Calenduloside e modulates macrophage polarization via KLF2-regulated glycolysis, contributing to attenuates atherosclerosis. Int. Immunopharmacol. 117, 109730 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhao, M. et al. Salvianolic acid B regulates macrophage polarization in ischemic/reperfused hearts by inhibiting mTORC1-induced glycolysis. Eur. J. Pharm. 871, 172916 (2020).

    Article 
    CAS 

    Google Scholar 

  • Mouton, A. J. et al. Temporal changes in glucose metabolism reflect polarization in resident and monocyte-derived macrophages after myocardial infarction. Front. Cardiovasc. Med. 10, 1136252 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yuan, Y., Li, P. & Ye, J. Lipid homeostasis and the formation of macrophage-derived foam cells in atherosclerosis. Protein Cell 3, 173–181 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sukhorukov, V. N. et al. Lipid metabolism in macrophages: focus on atherosclerosis. Biomedicines. 8, 262 (2020).

  • Huangfu, N. et al. TDP43 exacerbates atherosclerosis progression by promoting inflammation and lipid uptake of macrophages. Front. Cell Dev. Biol. 9, 687169 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cao, D. et al. Macrophage angiotensin-converting enzyme reduces atherosclerosis by increasing peroxisome proliferator-activated receptor α and fundamentally changing lipid metabolism. Cardiovasc. Res. 119, 1825–1841 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nomura, M. et al. Macrophage fatty acid oxidation inhibits atherosclerosis progression. J. Mol. Cell Cardiol. 127, 270–276 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Paulson, K. E. et al. Resident intimal dendritic cells accumulate lipid and contribute to the initiation of atherosclerosis. Circ. Res. 106, 383–390 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhang, X. et al. Identification of a leucine-mediated threshold effect governing macrophage mTOR signalling and cardiovascular risk. Nat. Metab. 6, 359–377 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rose, A. J. & Rusu, P. M. A leucine-macrophage mTORC1 connection drives increased risk of atherosclerosis with high-protein diets. Nat. Metab. 6, 203–204 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Nayak, D., Roth, T. L. & McGavern, D. B. Microglia development and function. Annu. Rev. Immunol. 32, 367–402 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shippy, D. C. & Ulland, T. K. Microglial Immunometabolism in Alzheimer’s disease. Front. Cell Neurosci. 14, 563446 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hsieh, S. W. et al. M2b macrophage subset decrement as an indicator of cognitive function in Alzheimer’s disease. Psychiatry Clin. Neurosci. 74, 383–391 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pan, R. Y. et al. Positive feedback regulation of microglial glucose metabolism by histone H4 lysine 12 lactylation in Alzheimer’s disease. Cell Metab. 34, 634–648.e636 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Xiang, X. et al. Microglial activation states drive glucose uptake and FDG-PET alterations in neurodegenerative diseases. Sci. Transl. Med. 13, eabe5640 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tondo, G. et al. The combined effects of microglia activation and brain glucose hypometabolism in early-onset Alzheimer’s disease. Alzheimers Res. Ther. 12, 50 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shippy, D. C. & Ulland, T. K. Lipid metabolism transcriptomics of murine microglia in Alzheimer’s disease and neuroinflammation. Sci. Rep. 13, 14800 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xu, J. et al. Integrated lipidomics and proteomics network analysis highlights lipid and immunity pathways associated with Alzheimer’s disease. Transl. Neurodegener. 9, 36 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Claes, C. et al. Plaque-associated human microglia accumulate lipid droplets in a chimeric model of Alzheimer’s disease. Mol. Neurodegener. 16, 50 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Podleśny-Drabiniok, A. et al. BHLHE40/41 regulate microglia and peripheral macrophage responses associated with Alzheimer’s disease and other disorders of lipid-rich tissues. Nat. Commun. 15, 2058 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hu, X., Ma, Y. N. & Xia, Y. Association between abnormal lipid metabolism and Alzheimer’s disease: new research has revealed significant findings on the APOE4 genotype in microglia. Biosci. Trends 18,195–197 (2024).

  • Beltrán-Castillo, S., Eugenín, J. & von Bernhardi, R. Impact of aging in microglia-mediated D-serine balance in the CNS. Mediators Inflamm. 2018, 7219732 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wu, S. Z. et al. Induction of serine racemase expression and D-serine release from microglia by amyloid beta-peptide. J. Neuroinflamm. 1, 2 (2004).

    Article 

    Google Scholar 

  • Nakajima, K., Kanamatsu, T., Takezawa, Y. & Kohsaka, S. Up-regulation of glutamine synthesis in microglia activated with endotoxin. Neurosci. Lett. 591, 99–104 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhong, W. J. et al. TREM-1 governs NLRP3 inflammasome activation of macrophages by firing up glycolysis in acute lung injury. Int. J. Biol. Sci. 19, 242–257 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, Y. et al. Paraquat promotes acute lung injury in rats by regulating alveolar macrophage polarization through glycolysis. Ecotoxicol. Environ. Saf. 223, 112571 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chen, D. L. et al. Increased T cell glucose uptake reflects acute rejection in lung grafts. Am. J. Transpl. 13, 2540–2549 (2013).

    Article 
    CAS 

    Google Scholar 

  • Liao, F. et al. Nanoparticle targeting of neutrophil glycolysis prevents lung ischemia-reperfusion injury. Am. J. Transplant. 24,1382–1394 (2024).

  • Qin, H. et al. Targeting CXCR1 alleviates hyperoxia-induced lung injury through promoting glutamine metabolism. Cell Rep. 42, 112745 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Vigeland, C. L. et al. Inhibition of glutamine metabolism accelerates resolution of acute lung injury. Physiol. Rep. 7, e14019 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, Y. et al. Glycine attenuates lipopolysaccharide-induced acute lung injury by regulating NLRP3 inflammasome and NRF2 signaling. Nutrients. 12, 611 (2020).

  • Cheng, S. C. et al. mTOR- and HIF-1α-mediated aerobic glycolysis as metabolic basis for trained immunity. Science 345, 1250684 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rashid, M. et al. Up-down regulation of HIF-1α in cancer progression. Gene 798, 145796 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Meng, Y. et al. Histone methyltransferase SETD2 inhibits M1 macrophage polarization and glycolysis by suppressing HIF-1α in sepsis-induced acute lung injury. Med. Microbiol. Immunol. 212, 369–379 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hao, H. et al. HIF-1α promotes astrocytic production of macrophage migration inhibitory factor following spinal cord injury. CNS Neurosci. Ther. 29, 3802–3814 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wu, M. M. et al. Dioscin ameliorates murine ulcerative colitis by regulating macrophage polarization. Pharm. Res. 172, 105796 (2021).

    Article 
    CAS 

    Google Scholar 

  • Yuan, Y. et al. Adipose-derived mesenchymal stem cells reprogram M1 macrophage metabolism via PHD2/HIF-1α pathway in colitis mice. Front. Immunol. 13, 859806 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cheng, Y. et al. Autologous blood transfusion impedes glycolysis in macrophages to inhibit red blood cell injury in type 2 diabetes through PI3K/Akt/PKM2 signaling axis. Acta Diabetol. 60, 481–492 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Du, N. et al. N-phenethyl-5-phenylpicolinamide alleviates inflammation in acute lung injury by inhibiting HIF-1α/glycolysis/ASIC1a pathway. Life Sci. 309, 120987 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tao, X., Yin, L., Xu, L. & Peng, J. Dioscin: a diverse acting natural compound with therapeutic potential in metabolic diseases, cancer, inflammation and infections. Pharm. Res. 137, 259–269 (2018).

    Article 
    CAS 

    Google Scholar 

  • Zhang, Z. et al. PI3K/Akt and HIF‑1 signaling pathway in hypoxia‑ischemia (Review). Mol. Med. Rep. 18, 3547–3554 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jang, H. J. et al. Nectandrin B-mediated activation of the AMPK pathway prevents cellular senescence in human diploid fibroblasts by reducing intracellular ROS levels. Aging 11, 3731–3749 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, J. Z. et al. The role of the HIF-1α/ALYREF/PKM2 axis in glycolysis and tumorigenesis of bladder cancer. Cancer Commun. 41, 560–575 (2021).

    Article 

    Google Scholar 

  • Dayton, T. L., Jacks, T. & Vander Heiden, M. G. PKM2, cancer metabolism, and the road ahead. EMBO Rep. 17, 1721–1730 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hu, X. et al. PI3K-Akt-mTOR/PFKFB3 pathway mediated lung fibroblast aerobic glycolysis and collagen synthesis in lipopolysaccharide-induced pulmonary fibrosis. Lab. Investig. 100, 801–811 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • He, Q., Yin, J., Zou, B. & Guo, H. WIN55212-2 alleviates acute lung injury by inhibiting macrophage glycolysis through the miR-29b-3p/FOXO3/PFKFB3 axis. Mol. Immunol. 149, 119–128 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhai, G. Y. et al. sDR5-Fc inhibits macrophage M1 polarization by blocking the glycolysis. J. Geriatr. Cardiol. 18, 271–280 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Songyang, Y. et al. The inhibition of GLUT1-induced glycolysis in macrophage by phloretin participates in the protection during acute lung injury. Int. Immunopharmacol. 110, 109049 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Abboud, G. et al. Inhibition of glycolysis reduces disease severity in an autoimmune model of rheumatoid arthritis. Front. Immunol. 9, 1973 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Surendar, J. et al. Adiponectin limits IFN-γ and IL-17 producing CD4 T cells in obesity by restraining cell intrinsic glycolysis. Front. Immunol. 10, 2555 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Herzig, S. & Shaw, R. J. AMPK: guardian of metabolism and mitochondrial homeostasis. Nat. Rev. Mol. Cell Biol. 19, 121–135 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Foretz, M. et al. Metformin: from mechanisms of action to therapies. Cell Metab. 20, 953–966 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rose, S. et al. Regulatory T cells and bioenergetics of peripheral blood mononuclear cells linked to pediatric obesity. Immunometabolism 6, e00040 (2024).

    Article 
    PubMed 

    Google Scholar 

  • Laussel, C. & Léon, S. Cellular toxicity of the metabolic inhibitor 2-deoxyglucose and associated resistance mechanisms. Biochem. Pharm. 182, 114213 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kang, H. T. & Hwang, E. S. 2-Deoxyglucose: an anticancer and antiviral therapeutic, but not any more a low glucose mimetic. Life Sci. 78, 1392–1399 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhong, W. J. et al. Inhibition of glycolysis alleviates lipopolysaccharide-induced acute lung injury in a mouse model. J. Cell Physiol. 234, 4641–4654 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Leone, R. D. et al. Glutamine blockade induces divergent metabolic programs to overcome tumor immune evasion. Science 366, 1013–1021 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wiel, C. et al. BACH1 stabilization by antioxidants stimulates lung cancer metastasis. Cell 178, 330–345.e322 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Guo, D. et al. Aerobic glycolysis promotes tumor immune evasion by hexokinase2-mediated phosphorylation of IκBα. Cell Metab. 34, 1312–1324.e1316 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kawalekar, O. U. et al. Distinct signaling of coreceptors regulates specific metabolism pathways and impacts memory development in CAR T Cells. Immunity 44, 712 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hinshaw, D. C. et al. Hedgehog signaling regulates metabolism and polarization of mammary tumor-associated macrophages. Cancer Res. 81, 5425–5437 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hermans, D. et al. Lactate dehydrogenase inhibition synergizes with IL-21 to promote CD8(+) T cell stemness and antitumor immunity. Proc. Natl Acad. Sci. USA 117, 6047–6055 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Inamdar, S. et al. Rescue of dendritic cells from glycolysis inhibition improves cancer immunotherapy in mice. Nat. Commun. 14, 5333 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sekulic, A. et al. Efficacy and safety of vismodegib in advanced basal-cell carcinoma. N Engl. J. Med. 366, 2171–2179 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kalyanaraman, B., Cheng, G., Hardy, M. & You, M. OXPHOS-targeting drugs in oncology: new perspectives. Expert Opin. Ther. Targets 27, 939–952 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Donati, G. et al. Oxidative stress enhances the therapeutic action of a respiratory inhibitor in MYC-driven lymphoma. EMBO Mol. Med. 15, e16910 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Purhonen, J., Klefström, J. & Kallijärvi, J. MYC-an emerging player in mitochondrial diseases. Front. Cell Dev. Biol. 11, 1257651 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xiao, G. et al. B-Cell-specific diversion of glucose carbon utilization reveals a unique vulnerability in B cell malignancies. Cell 173, 470–484.e418 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hu, J. et al. WEE1 inhibition induces glutamine addiction in T-cell acute lymphoblastic leukemia. Haematologica 106, 1816–1827 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Yang, Y. et al. Mitochondrial UQCC3 modulates hypoxia adaptation by orchestrating OXPHOS and glycolysis in hepatocellular carcinoma. Cell Rep. 33, 108340 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Verstockt, B. et al. The safety, tolerability, pharmacokinetics and clinical efficacy of the NLRX1 agonist NX-13 in active ulcerative colitis: results of a phase 1b study. J. Crohns Colitis, 18, 762–772 (2023).

  • Kawalekar, O. U. et al. Distinct signaling of coreceptors regulates specific metabolism pathways and impacts memory development in CAR T Cells. Immunity 44, 380–390 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Whelan, J. & Fritsche, K. Linoleic acid. Adv. Nutr. 4, 311–312 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Alarcon-Gil, J. et al. Neuroprotective and anti-inflammatory effects of linoleic acid in models of parkinson’s disease: the implication of lipid droplets and lipophagy. Cells. 11, 229 (2022).

  • Mercola, J. & D’Adamo, C. R. Linoleic acid: a narrative review of the effects of increased intake in the standard american diet and associations with chronic disease. Nutrients. 15, 3129 (2023).

  • Hildreth, K., Kodani, S. D., Hammock, B. D. & Zhao, L. Cytochrome P450-derived linoleic acid metabolites EpOMEs and DiHOMEs: a review of recent studies. J. Nutr. Biochem 86, 108484 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nava Lauson, C. B. et al. Linoleic acid potentiates CD8(+) T cell metabolic fitness and antitumor immunity. Cell Metab. 35, 633–650.e639 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ma, K. et al. Hepatocellular carcinoma LINC01116 outcompetes T cells for linoleic acid and accelerates tumor progression. Adv. Sci., e2400676, (2024).

  • Liu, P. S. et al. CD40 signal rewires fatty acid and glutamine metabolism for stimulating macrophage anti-tumorigenic functions. Nat. Immunol. 24, 452–462 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • An, L. et al. Qingfei oral liquid alleviates RSV-induced lung inflammation by promoting fatty-acid-dependent M1/M2 macrophage polarization via the Akt signaling pathway. J. Ethnopharmacol. 298, 115637 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Afonso, M. B. et al. RIPK3 acts as a lipid metabolism regulator contributing to inflammation and carcinogenesis in non-alcoholic fatty liver disease. Gut 70, 2359–2372 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Xu, M. et al. Activated TNF-α/RIPK3 signaling is involved in prolonged high fat diet-stimulated hepatic inflammation and lipid accumulation: inhibition by dietary fisetin intervention. Food Funct. 10, 1302–1316 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Schlaepfer, I. R. & Joshi, M. CPT1A-mediated fat oxidation, mechanisms, and therapeutic potential. Endocrinology 161, bqz046 (2020).

  • Bougarne, N. et al. Molecular actions of PPARα in lipid metabolism and inflammation. Endocr. Rev. 39, 760–802 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Wang, D. et al. Fibrates for secondary prevention of cardiovascular disease and stroke. Cochrane Database Syst. Rev. 2015, Cd009580 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Vonderheide, R. H. CD40 agonist antibodies in cancer immunotherapy. Annu. Rev. Med. 71, 47–58 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fleischmann, R. et al. Placebo-controlled trial of tofacitinib monotherapy in rheumatoid arthritis. N. Engl. J. Med. 367, 495–507 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sandborn, W. J. et al. Tofacitinib as induction and maintenance therapy for ulcerative colitis. N. Engl. J. Med. 376, 1723–1736 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mease, P. et al. Tofacitinib or adalimumab versus placebo for psoriatic arthritis. N. Engl. J. Med. 377, 1537–1550 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pérez-Baos, S. et al. Tofacitinib restores the inhibition of reverse cholesterol transport induced by inflammation: understanding the lipid paradox associated with rheumatoid arthritis. Br. J. Pharm. 174, 3018–3031 (2017).

    Article 

    Google Scholar 

  • Barrera, G., Pizzimenti, S. & Dianzani, M. U. Lipid peroxidation: control of cell proliferation, cell differentiation and cell death. Mol. Asp. Med. 29, 1–8 (2008).

    Article 
    CAS 

    Google Scholar 

  • Liu, J. et al. Chenodeoxycholic acid suppresses AML progression through promoting lipid peroxidation via ROS/p38 MAPK/DGAT1 pathway and inhibiting M2 macrophage polarization. Redox Biol. 56, 102452 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lai, Z. W. et al. N-acetylcysteine reduces disease activity by blocking mammalian target of rapamycin in T cells from systemic lupus erythematosus patients: a randomized, double-blind, placebo-controlled trial. Arthritis Rheum. 64, 2937–2946 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, M. et al. Early-stage lupus nephritis treated with N-acetylcysteine: a report of two cases. Exp. Ther. Med. 10, 689–692 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Altman, B. J., Stine, Z. E. & Dang, C. V. From Krebs to clinic: glutamine metabolism to cancer therapy. Nat. Rev. Cancer 16, 619–634 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cluntun, A. A., Lukey, M. J., Cerione, R. A. & Locasale, J. W. Glutamine metabolism in cancer: understanding the heterogeneity. Trends Cancer 3, 169–180 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hensley, C. T., Wasti, A. T. & DeBerardinis, R. J. Glutamine and cancer: cell biology, physiology, and clinical opportunities. J. Clin. Investig. 123, 3678–3684 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Martinez-Outschoorn, U. E. et al. Cancer metabolism: a therapeutic perspective. Nat. Rev. Clin. Oncol. 14, 11–31 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sbirkov, Y. et al. Targeting glutaminolysis shows efficacy in both prednisolone-sensitive and in metabolically rewired prednisolone-resistant b-cell childhood acute lymphoblastic leukaemia cells. Int. J. Mol. Sci. 24, 3378 (2023).

  • Tang, Y. et al. Simultaneous glutamine metabolism and PD-L1 inhibition to enhance suppression of triple-negative breast cancer. J. Nanobiotechnol. 20, 216 (2022).

    Article 
    CAS 

    Google Scholar 

  • Huang, R. et al. Targeting glutamine metabolic reprogramming of SLC7A5 enhances the efficacy of anti-PD-1 in triple-negative breast cancer. Front. Immunol. 14, 1251643 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pillai, R. et al. Glutamine antagonist DRP-104 suppresses tumor growth and enhances response to checkpoint blockade in KEAP1 mutant lung cancer. Sci. Adv. 10, eadm9859 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sugimoto, K. et al. A clinically attainable dose of L-asparaginase targets glutamine addiction in lymphoid cell lines. Cancer Sci. 106, 1534–1543 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, N. et al. Eubacterium rectale improves the efficacy of anti-PD1 immunotherapy in melanoma via l-serine-mediated NK cell activation. Research 6, 0127 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, Y. et al. Lycorine eliminates B-cell acute lymphoblastic leukemia cells by targeting PSAT1 through the serine/glycine metabolic pathway. Eur. J. Pharm. 961, 176162 (2023).

    Article 
    CAS 

    Google Scholar 

  • Apostolova, P. & Pearce, E. L. Lactic acid and lactate: revisiting the physiological roles in the tumor microenvironment. Trends Immunol. 43, 969–977 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ma, J. et al. Lithium carbonate revitalizes tumor-reactive CD8(+) T cells by shunting lactic acid into mitochondria. Nat. Immunol. 25, 552–561 (2024).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Plitzko, B. & Loesgen, S. Measurement of oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) in culture cells for assessment of the energy metabolism. Bio Protoc. 8, e2850 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sakamuru, S., Attene-Ramos, M. S. & Xia, M. Mitochondrial membrane potential assay. Methods Mol. Biol. 1473, 17–22 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McGarry, T. et al. Rheumatoid arthritis CD14(+) monocytes display metabolic and inflammatory dysfunction, a phenotype that precedes clinical manifestation of disease. Clin. Transl. Immunol. 10, e1237 (2021).

    Article 
    CAS 

    Google Scholar 

  • Grayson, P. C. et al. Metabolic pathways and immunometabolism in rare kidney diseases. Ann. Rheum. Dis. 77, 1226–1233 (2018).

    PubMed 

    Google Scholar 

  • Shinohara, S., Hirohata, S., Inoue, T. & Ito, K. Phenotypic analysis of peripheral blood monocytes isolated from patients with rheumatoid arthritis. J. Rheumatol. 19, 211–215 (1992).

    CAS 
    PubMed 

    Google Scholar 

  • Chen, S. et al. Peripheral blood monocytes predict clinical prognosis and support tumor invasiveness through NF-κB-dependent upregulation of Snail in pancreatic cancer. Transl. Cancer Res. 10, 4773–4785 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wu, Y. et al. Clinical significance of peripheral blood and tumor tissue lymphocyte subsets in cervical cancer patients. BMC Cancer 20, 173 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tang, L., Ye, J., Shi, Y. & Zhu, X. Association between CD16(++) monocytes in peripheral blood and clinical features and short-term therapeutic effects of polycystic ovary syndrome. Int J. Gynaecol. Obstet. 145, 12–17 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Artyomov, M. N. & Van den Bossche, J. Immunometabolism in the Single-Cell Era. Cell Metab. 32, 710–725 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vreijling, S. R. et al. Features of immunometabolic depression as predictors of antidepressant treatment outcomes: pooled analysis of four clinical trials. Br. J. Psychiatry 224, 89–97 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sterner, R. C. & Sterner, R. M. CAR-T cell therapy: current limitations and potential strategies. Blood Cancer J. 11, 69 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Oo, Y. H. et al. Liver homing of clinical grade Tregs after therapeutic infusion in patients with autoimmune hepatitis. JHEP Rep. 1, 286–296 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Galli, F. et al. Relevance of immune cell and tumor microenvironment imaging in the new era of immunotherapy. J. Exp. Clin. Cancer Res. 39, 89 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xiao, C. et al. Immunometabolism: a new dimension in immunotherapy resistance. Front. Med. 17, 585–616 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Clarke, A. J. et al. B1a B cells require autophagy for metabolic homeostasis and self-renewal. J. Exp. Med. 215, 399–413 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhou, Y. et al. Xanthones from Securidaca inappendiculata Hassk. attenuate collagen-induced arthritis in rats by inhibiting the nicotinamide phosphoribosyltransferase/glycolysis pathway and macrophage polarization. Int. Immunopharmacol. 111, 109137 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jiang, W. et al. Peficitinib alleviated acute lung injury by blocking glycolysis through JAK3/STAT3 pathway. Int. Immunopharmacol. 132, 111931 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *